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ABSTRACT

Motivation: 30 end processing is important for transcription termin-

ation, mRNA stability and regulation of gene expression. To identify

30 ends, most techniques use an oligo-dT primer to construct deep

sequencing libraries. However, this approach can lead to identification

of artifactual polyadenylation sites due to internal priming in homopo-

lymeric stretches of adenines. Although heuristic filters have been

applied in these cases, they typically result in a high proportion of

both false-positive and -negative classifications. Therefore, there is a

need to develop improved algorithms to better identify mis-priming

events in oligo-dT primed sequences.

Results: By analyzing sequence features flanking 30 ends derived from

oligo-dT-based sequencing, we developed a naı̈ve Bayes classifier to

classify them as true or false/internally primed. The resulting algorithm

is highly accurate, outperforms previous heuristic filters and facilitates

identification of novel polyadenylation sites.
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1 INTRODUCTION

30 end processing of pre-mRNAs influences transcription termin-

ation,mRNA stability and localization and dynamic regulation of

translation. In plants, yeast and metazoans, sequence elements in

the 30 untranslated region (30UTR) direct cleavage and polyade-

nylation (reviewed in Millevoi and Vagner, 2010; Proudfoot,
2011). Among these elements is the polyadenylation signal

(PAS), a defined hexameric sequence located 10–30 nucleotides

(nt) upstream of the cleavage and polyadenylation site (pA site),

which binds Cleavage and Polyadenylation Specificity Factor
complex (Millevoi and Vagner, 2010; Proudfoot, 2011). The

PAS predominantly comprises the sequence AAUAAA (Proud-

foot and Brownlee, 1976), although single nucleotide variants are

also functional (Beaudoing et al., 2000; Sheets et al., 1990). In

addition to the PAS, a guanine/uracil- or uracil-rich downstream
sequence element can be found20–40nt downstreamof the pA site

that is recognized by Cleavage Stimulatory Factor (Millevoi and

Vagner, 2010; Proudfoot, 2011). In some instances, a uracil-rich

sequence element is present upstream of the PAS, which may also

act to enhance usage of a specific PAS by recruiting Cleavage

Factor I (Millevoi and Vagner, 2010; Proudfoot, 2011). In com-

bination, these sequence elements help define the site of cleavage

and polyadenylation at the 30 end of a pre-mRNA.
Most efforts to identify 30 ends of mRNAs have relied on prim-

ing with an oligonucleotide of deoxythymines (oligo-dT). These

efforts include early studies relying on expressed sequence tags

(ESTs; Beaudoing et al., 2000; Tian et al., 2005; Zhang et al.,
2005), as well as more recent work using deep sequencing (re-

viewed inMueller et al., 2013). These include Poly(A) Site sequen-
cing (PAS-Seq; Shepard et al., 2011) and PolyA-Seq (Derti et al.,

2012), which rely on oligo-dT containing primers for first strand

cDNA synthesis. While these approaches are technically straight-
forward, oligo-dT binding can occur in internal homopolymeric

stretches of adenines (Nam et al., 2002) leading to identification of
false-positive pA sites. A more selective method is poly(A)-pos-

ition profiling by sequencing (referred to as 3pseq), where a splint

RNA:DNA oligonucleotide with overhanging thymines is hybri-
dized and ligated to the polyadenylated tail of mRNAs to prevent

internal priming (Jan et al., 2011). However, 3pseq is technically
demanding andmost laboratories are more likely to use oligo-dT-

primed approaches. In these latter cases, internal priming events

are generally filtered from datasets based on the number of aden-
ines in the genomic sequence downstream of the cleavage site

(Beaudoing et al., 2000; Brockman et al., 2005; Fu et al., 2011;
Haenni et al., 2012; Liu et al., 2007; Shen et al., 2011; Shepard

et al., 2011; Smibert et al., 2012; Tian et al., 2005;Wilkening et al.,

2013; Wu et al., 2011; Zhang et al., 2005). However, the strict
definition of these heuristic filters inevitably misses some internal

priming events (false positives) and also excludes true 30 ends (false
negatives; Sherstnev et al., 2012). Thus, additional methods are

needed to easily analyze oligo-dT primed deep sequencing data to

identify true pA sites.
A naı̈ve Bayes classifier, based on Bayes theorem, is a super-

vised learning algorithm in which the features used to predict the
class are considered conditionally independent (Alpayd|n, 2010).
Naı̈ve Bayes classifiers are computationally efficient, require rela-
tively small training datasets, handle both continuous and dis-

crete features and ignore non-relevant features (Kotsiantis et al.,

2006; Alpayd|n, 2010). Here, we demonstrate the effectiveness of
a naı̈ve Bayes classifier to identify internal priming events in

oligo-dT primed sequencing data. We find that our trained algo-
rithm outperforms heuristic filters and enriches for 30 ends in

oligo-dT sequencing data that bear canonical motifs important

for cleavage and polyadenylation. Biological validation shows
that our method is highly accurate, facilitating identification of

novel 30UTRs and 30 ends in multiple animal species.*To whom correspondence should be addressed.
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2 METHODS

2.1 Zebrafish care and staging

Zebrafish were maintained as described in (Westerfield, 1993) and staged

as described in (Kimmel et al., 1995). Studies were performed under the

approval of the University of Massachusetts Medical School Institutional

Animal Care and Usage Committee.

2.2 RNA purification

Total RNA was purified from either 6 or 24hpf wild-type CF zebrafish

and treated with DNase I (Qiagen RNeasy Mini Kit, Qiagen RNase-Free

DNase Set). Polyadenylated RNA was selected using magnetic oligo-dT

beads (Invitrogen mRNA Direct Kit).

2.3 RNA-seq libraries and data analysis

The 24hpf zebrafish RNA-seq library was built using an Illumina

mRNA-seq protocol (Part # 1004898 Rev. D) and paired-end sequenced

on an Illumina Genome Analyzer II (76nt reads) and an Illumina Hi-Seq

(101nt reads). Sanger 6 hpf RNA-seq data were downloaded from the

European Bioinformatics Institute (run ERR022485). RNA-seq reads

from both developmental stages starting with at least five thymines (the

reverse complement of a polyadenylated mRNA) or ending with at least

five adenines were mapped to the zebrafish genome (Zv9) using Bowtie

(Langmead et al., 2009; Supplementary Fig. S1A). Those that mapped to

the genome were taken as sites for potential internal oligo-dT priming

and included in the True Negative training set (Supplementary Fig. S1A).

The site of internal priming was assigned to the single nucleotide imme-

diately upstream of the last mapped 30 adenine in this set (referred to as

RNA-seq internally primed sites). Sequence fragments that did not ini-

tially map were trimmed of terminal adenines (or thymines) and re-

mapped (Supplementary Fig. S1A). Mapped reads (referred to as

RNA-seq putative pA sites) were combined with the PAS-Seq data for

establishment of the True Positive training sets (Supplementary Fig. S1A;

see Training Sets).

2.4 30 end deep sequencing datasets

We constructed PAS-Seq libraries as described in (Shepard et al., 2011),

using barcoded adapters, and paired-end sequenced on an Illumina Hi-

Seq (101nt reads) with a custom sequencing primer described in (Shepard

et al., 2011) designed to exclude the remainder of the poly(A) tail from

sequencing. Libraries were de-convoluted using Perl scripts and mapped

to the zebrafish genome (Zv9) using Tophat (Trapnell et al., 2009).

Zebrafish 6 and 24hpf 3pseq (Ulitsky et al., 2011) and mammalian

polyA-seq alignments (Derti et al., 2012) were downloaded from the

Gene Expression Omnibus (accession numbers GSE32880, GSE30198).

cleanUpdTSeq (see below) was used to classify putative sites from unfil-

tered polyA-seq as true or false, using a probability assignment

cutoff¼ 0.5. No additional filtering was performed on the 3pseq or the

originally filtered polyA-seq datasets.

2.5 RNA-Seq Transcriptome Analysis

To assess the utility of our classifier on an annotated transcriptome, we

used it on previously published RNA-seq models for zebrafish embryos

described in Pauli et al. (2012). Unique 30 transcript ends were classified

using cleanUpdTSeq as described below.

2.6 pA site builds

A custom Perl script clustered mapped sequencing reads into putative pA

sites. Mapped reads were trimmed 30 terminal nt, which corresponds to

the site of cleavage. Reads were clustered first for identically matching

sites. An iterative process was used to cluster adjacent sites within �5nt,

starting with the site with the highest number of reads. Within a cluster,

the putative pA site was defined as the location with the most reads and

the total reads were combined to give the height. Mann–Whitney test was

performed to assess height differences between datasets (Hollander and

Wolfe, 1999). Concordance between datasets was defined as being within

�10nt using a Perl script. The distance from the putative PAS to the pA

site was determined as the distance from the 30 end of the PAS to the pA

site.

2.7 Training Sets

RNA-seq putative pA sites were combined with the PAS-Seq putative pA

sites and clustered as described above (Supplementary Fig. S1A). Sites

concordant between the PAS-Seq and the 3pseq data sets were assigned

to the True Positive training set (Supplementary Fig. S1A). 3pseq coord-

inates were used if there was not an exact match. RNA-seq internally

primed sites not concordant with 3pseq were assigned to the True

Negative training set (Supplementary Fig. S1A). Only sites that were

present in both the 6 and 24hpf datasets were used for training

(Supplementary Fig. S1B). We did not take the number of sequencing

reads that composed a putative pA site into account.

2.8 cleanUpdTSeq

The function buildFeatureVector in the cleanUpdTSeq package was used

to build feature vectors for training dataset and test dataset. Features

include presence/absence of 4096 hexamers in the upstream of the pA

sites, downstream mononucleotide count, downstream dinucleotide count

and average distance of downstream adenines to the pA site

(Supplementary Fig. S2B). The upstream features are modeled as bino-

mial variables and the downstream features are modeled as normal vari-

ables. A naı̈ve Bayes classifier was built using the training data and the

function buildClassifier, which leverages the R package e1071 with

laplace set to 1. To classify the test dataset, the predictClass function

was applied. These functions along with sequence fetching utilities

and training data are available on our website (lawsonlab.umassmed.

edu/cleanupdtseq.html). The package cleanUpdTSeq is available at

Bioconductor.org.

2.9 Performance Metrics

Precision, recall, true negative rate (TNR), false discovery rate (FDR),

false positive rate (FPR), accuracy, F-score and Matthew’s correlation

coefficient (MCC) were calculated using the following equations.

TP¼ true positive, TN¼ true negative, FP¼ false positive, FN¼ false

negative.

Pr ecision ¼
TP

FPþ TP

Recall ¼
TP

FNþ TP

TNR ¼
TN

TNþ FP

FDR ¼
FP

FPþ TP

FPR ¼
FP

TNþ FP

Accuracy ¼
TPþ TN

TNþ FNþ FPþ TP

F� Score ¼
2� precision� recall

precisionþ recall

MCC ¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

MisclassificationError ¼
FPþ FN

TPþ TNþ FPþ FN
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Pearson’s correlation coefficient was used to assess nucleotide profile

correlation (Pietrokovski, 1996; R Core Team, 2013). To apply heuristic

filters (8A and 8A plus top 10 PAS), Perl scripts were used to classify all

putative pA sites from the training set (True Positives and True

Negatives).

2.10 Model selection, training set size and relative feature

importance

For performance evaluation, the training datasets were randomly split

(70% used for training and 30% used for cross-validation) in 10 trials,

each with a range of probability cutoffs from 0 to 1 at an interval of 0.1

for each combination of upstream (20–50nt in increments of 10 nt) and

downstream (30–50nt in increments of 10nt) sequence. We calculated

average precision, recall, F-score, accuracy, true negative rate, false dis-

covery rate, false positive rate and MCC from 10 cross-validations of

each model, using a probability of true cutoff of 0.5 (Supplementary

Table S1). We chose 40nt of upstream and 30nt of downstream sequence

for subsequent PAS identification.

To evaluate training set size, we trained the classifier with 15995

(50%), 19194 (60%), 22393 (70%), 25 592 (80%) or 28791 (90%)

peaks and used the remainder for cross validation. Average precision,

recall, F-score, accuracy, true negative rate, false discovery rate, false

positive rate and MCC from 10 cross-validation trials were calculated

as above.

To evaluate the relative importance of each feature, P-values using

prop.test in R and odds ratio were calculated for the binary features

(Mladenic and Grobelnik, 1999). For the continuous features, P-values

were calculated using t-test. Features were ordered by P-values, with

lowest values indicating greatest importance. Upstream features

(binary) and downstream features (continuous) are listed separately in

Supplementary Tables S2A and B, respectively. In addition, the top

200 positive upstream features are listed in Supplementary Table S2C,

which only include top upstream features with odds ratio50. The pres-

ence of positive features is associated with increased probability of being a

true polyadenylation site.

2.11 PAS flanking sequence characterization

Commonly used zebrafish PASs were identified by applying Multiple Em

for Motif Elicitation (MEME) (Bailey and Elkan, 1994) to 50nt upstream

of 30 ends annotated in Ensembl (v61). These were used to build a Perl

script to search for a canonical or variant PASs. For mammals, a Perl

script was used to search for a canonical or variant PAS in order of

decreasing usage in polyA-seq data (Derti et al., 2012). For the True

Positive and True Negative training sets, 50 nt upstream for all of the

sites was examined using MEME (Bailey and Elkan, 1994) with the fol-

lowing settings: -minw 5 -maxw 10 –oops. 50 nt downstream of all of the

sites was examined using the options: -minw 5 -maxw 50 –oops. For

the other datasets, 40nt upstream of the pA site and 30nt downstream of

10 000 randomly chosen sites within the dataset were used for analysis

(upstream: -minw 5 -maxw 10 –oops; downstream: -minw 5 -maxw

30 – oops).

2.12 Poly(A) tail length assays

Total RNA was purified from 24hpf wild-type CF zebrafish (Qiagen

RNeasy Mini Kit). For the G-tail assay, we used the Affymetrix

Poly(A) Tail-Length Assay Kit to add guanosines and inosines to the

30 end of the polyadenylated mRNAs (Martin and Keller, 1998).

Subsequently, reverse transcription was performed with a poly-cytosine

anchored primer. Alternatively, we used an oligo-dT(10) primer to make

cDNA (Murray and Schoenberg, 2008). In both cases cDNAs were used

as a template in a 20 cycle primary PCR with Hot Master Taq DNA

polymerase (50) to amplify the 30 end with poly(A) tail with a forward

primer and assay-specific reverse primer (G-Tail: Affymetrix Poly(A)

Tail-Length Assay Kit Universal Primer, oligo-dT:

GGGGATCCGCGGTTTTTTTTTT; Murray and Schoenberg, 2008).

Nested PCR was performed for 20 to 35 cycles using 1 ml of a 1:50

dilution of the primary PCR as template, a nested forward primer and

the assay-specific reverse primer. PCR products were run on a 2% agar-

ose gel. Gene-specific oligonucleotides were also used to help estimate the

size of the 30UTR without any poly(A) tail. The lower part of the smear

or single band were excised from the gel, column purified (Qiagen

MinElute Gel Extraction Kit), shotgun cloned (Promega pGEM-T

Easy Vector System I) and sequence verified.

3 RESULTS AND DISCUSSION

To distinguish between true and false pA sites in oligo-dT primed

deep sequencing data, we trained a naı̈ve Bayes classifier using

defined True Positive and True Negative sites. Given the demon-

strated technical rigor of 3pseq, True Positives were defined as

the intersection of 30 ends identified by both 3pseq and PAS-Seq

datasets from the same stage of zebrafish embryos

(Supplementary Fig. S1A). True Negatives were derived from

oligo-dT primed RNA-Seq reads with at least five genomically

templated terminal adenines or proximal thymines and were not

present in 3pseq (Supplementary Fig. S1A). The training set

consists of 22770 True Positives and 9 219 True Negatives,

Fig. 1. Training sets display characteristics of true pA sites and internally

oligo-dT primed sites. (A) Nucleotide composition of pA site flanking

True Positives. (B) Over-represented motifs upstream and downstream

of True Positives. (C) Distribution of cleavage distance for consensus

PASs of True Positive training set. (D) Nucleotide composition flanking

True Negatives. (E) Over-represented motifs upstream and downstream

of True Negatives. (F) Distribution of cleavage distance for canonical

or variant PASs of True Negative training set. (G). PAS distribution

upstream of True Positives and True Negatives. Hexamers included in

‘variant’ are AGTAAA, TATAAA, AATACA, CATAAA, AATGAA,

TTTAAA, AACAAA, GATAAA
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representing the majority of zebrafish-coding genes (data not

shown). As expected of pA sites (Graber et al., 1999), True

Positives exhibited a prevalence of adenines and thymines

upstream of the cleavage site (Fig. 1A) and a canonical PAS

clustered near the 30 end (Fig. 1B and C). Downstream of the

pA site we noted thymine and a slight enrichment of guanine

(Fig. 1A). By contrast, True Negative sites failed to exhibit char-

acteristics associated with pA sites (Fig. 1D and E), and the small

fraction of PASs in these sequences did not cluster near the 30

end (Fig. 1F and G).

3.1 Algorithm training and performance

To delineate the True Positives from the True Negatives, we

chose algorithm features to represent sequence elements known

to direct cleavage and polyadenylation (Supplementary Fig.

S2A). In the upstream sequence region, this included all hexamer

permutations to allow for self-discovery of potential canonical

and variant PASs and uracil-rich elements (Supplementary Fig.

S2B). Downstream of a putative cleavage site, guanine/uracil- or

uracil-rich elements may signify a true pA site (Proudfoot, 2011),

while adenine richness may indicate internal oligo-dT priming.

Therefore, we also included mono- and di-nucleotide counts, as

well as the average distance of the adenines to the pA site, as

features (Supplementary Fig. S2B). The upstream features were

modeled as a binomial distribution and the downstream features

were modeled as a normal distribution. The relative importance

of each feature is listed in Supplementary Table S2A. As ex-

pected, canonical PASs, AATAAA and ATTAAA, are among

the top four most important binary features (Supplementary

Table S2A), while downstream T/GT rich elements, adenine rich-

ness and proximity to the pA site are among the most important

continuous features (Supplemental Table S2B). Variant PASs

also aid in identification of true pA sites (Supplemental Table

S2C: top 200 positive hexamers upstream). Variation of up-

(20–50nt) and downstream (30–50nt) sequence lengths for

these features (Supplementary Fig. S2C) demonstrated low vari-

ability between the different models (Supplementary Table S1).

We chose 40 nt of upstream sequence, as not to miss any possible

PASs in the upstream region due to variations in cleavage site

usage, and 30nt downstream for subsequent training (Pauws

et al., 2001).
To develop and test the naı̈ve Bayes classifier, we randomly

sampled 70% of the training set to build the classifier (training)

and the remaining 30% to evaluate performance (cross-valid-

ation) and averaged the results of 10 trials. Following training,

we found that the naı̈ve Bayes classifier recalled 92.2% of True

Negatives (true negative rate, Table 1 and Fig. 2A) and 93.8% of

True Positives (recall, Table 1 and Fig. 2B), while it incorrectly

categorized only 3.2% of predicted positives (false discovery rate,

Table 1 and Fig. 2C). By contrast, a heuristic filter defined as 8

or more adenines in 10 nt downstream of the pA site (referred to

hereafter as 8A) generally performed worse at identifying True

Negatives and False positives, although recall with this filter was

quite good (Fig. 2 and Table 1). While removing all sites without

a putative PAS in combination with the 8A filter (PASþ 8A)

improved performance (Fig. 2A–C), the naı̈ve Bayes classifier

generally outperformed both of these heuristic filters, as deter-

mined by MCC, a balanced measure of true positives, false

positives, true negatives and false negatives (Matthew’s correl-

ation coefficient, Table 1 and Fig. 2D; Matthews, 1975). While

the size of the training set may lead to over-fitting due to

biased sequence composition, algorithm performance was similar

using 50, 60, 70, 80 or 90% of the True Positives and True

Negatives for training (Supplementary Fig. S3), demonstrating

that our initial training set was of sufficient size. Taken together,

the naive Bayes classifier outperforms the heuristic filters on

these initial training and cross-validation sets. Furthermore,

the increased specificity appears to come with little cost to

sensitivity.

3.2 Application to PAS-Seq data

To more generally test the performance of the naı̈ve Bayes clas-

sifier, we used all True Positives and True Negatives to build the

classifier and used it to categorize unfiltered oligo-dT primed 30

end deep sequencing (PAS-Seq) data from 24hpf zebrafish

embryos. Genomic sequence flanking 30 ends from unfiltered

Fig. 2. The trained algorithm outperforms heuristic filters. Performance

metrics for naı̈ve Bayes classification compared with 8A or PASþ 8A

filters (see text for description of filters). (A) True Negative Rate. (B)

Recall. (C) False Discovery Rate. (D) Matthew’s Correlation Coefficient

Table 1. Performance measurement from naı̈ve Bayes classifier and indi-

cated heuristic filters

naı̈ve Bayes 8A only PASþ 8A

True-negative rate 0.922 0.645 0.891

Recall 0.938 0.984 0.899

False discovery rate 0.032 0.127 0.047

Matthew’s correlation coefficient 0.843 0.722 0.773

Precision 0.968 0.873 0.953

F-score 0.953 0.925 0.926

Accuracy 0.934 0.886 0.897

False-positive rate 0.078 0.355 0.109

Note: naive Bayes classifier outperforms heuristic filters based on the number of

adenines downstream of a putative site and polyadenylation consensus signal

upstream of a putative pA site.

See methods for a description of filters and equations of the performance metrics.
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PAS-Seq data shows enrichment for adenines upstream and

downstream of the pA site (Fig. 3A), similar to our True

Negative training set (see Fig. 1D and E; rA¼ 0.89, rC¼ 0.78,

rG¼ 0.79, rT¼ 0.76). Furthermore, we failed to identify a canon-

ical PAS as an over-represented motif upstream of putative pA

sites in unfiltered PAS-Seq data (Fig. 3A). Indeed, only 20.6% of

the putative pA sites contain an upstream AATAAA and 55.4%

have no identifiable PAS (Fig. 3B). Thus, this dataset likely con-

tains a high proportion of sequences derived from internal oligo-

dT priming. Filtering these data with the trained naı̈ve Bayes

classifier calls 65.4% of putative pA sites from PAS-Seq as

false, and the nucleotide profile of pA sites called true resembled

that of pA sites identified at the same developmental stage by the

more technically rigorous 3pseq approach (compare Fig. 3C and

D; rA¼ 0.83, rC¼ 0.68, rG¼ 0.85, rT¼ 0.86). Similar upstream

(canonical PAS) and downstream sequence (guanine/thymine-

rich) elements were also easily identified in both 3pseq and fil-

tered PAS-Seq datasets (Fig. 3C and D). In all, 49% of the true

pA sites called by the classifier contain AATAAA and only

19.2% have no PAS, in agreement with genome-wide PAS dis-

tributions (Li et al., 2012; Ulitsky et al., 2012) and similar to

3pseq data (Fig. 3B). In contrast to the naı̈ve Bayes classifier,

categorizing PAS-Seq using the 8A heuristic filter classified only

18.1% of putative pA sites as false, leading to only slightly better

correlation of sequence composition of the remaining sites with

those from 3pseq data (rA¼ 0.45, rC¼ 0.12, rG¼ 0.65, rT¼ 0.61)

compared with the unfiltered PAS-Seq. However, the adenine

richness in the downstream sequence region and lack of identi-

fiable consensus PAS suggest a large number of internally oligo-

dT primed sites are called as positives after applying the 8A filter

(Fig. 3B and E). The PASþ 8A heuristic filter performs better

than the 8A filter, likely by excluding more false positives

(rA¼ 0.76, rC¼ 0.57, rG¼ 0.83, rT¼ 0.82; Fig. 3F). However,

based on its strict definition, the PASþ 8A filter eliminates all

true pA sites that do not contain a consensus PAS (Fig. 3B).

Together, these results demonstrate that our naı̈ve Bayes classi-

fier performs better than heuristic filters, resulting in a set of

putative pA sites that closely resembles 3pseq. Importantly, our

classifier is also able to identify 30 ends that do not bear a con-

sensus PAS. Further examination of this subset reveals 53%

contain the top 50 positive hexamers upstream, and 74% contain

the top 100 positive hexamers upstream (Supplementary Table

S2C).
Comparison of the proportion of pA sites common to PAS-

Seq and 3pseq data in 24hpf zebrafish embryos revealed an in-

crease from 13.0 to 35.7% after filtering PAS-Seq data with the

naı̈ve Bayes classifier (Fig. 4A). Interestingly, both common and

unique pA sites exhibit characteristics typical of true PAS

(Fig. 4B–D), although those unique to only 3pseq or PAS-Seq

datasets show a higher proportion of variant PAS usage

(Fig. 4E). The occurrence of these sites in only 3pseq or PAS-

Seq datasets may be due to low levels of expression that are not

consistently detected at this sequencing depth. Accordingly, pA

sites common to PAS-Seq and 3pseq comprise significantly

(P52.2e-16) more sequencing reads than those unique to

either PAS-Seq (mean of 288.69 versus 8.85) or 3pseq (mean of

204.94 versus 21.4; Fig. 4F). Other technical issues may also

Fig. 4. Comparison of raw and filtered PAS-Seq 30 ends with those from

3pseq. (A) Overlap of 24hpf zebrafish putative pA sites from PAS-Seq

and 3pseq before and after filtering of PAS-Seq by the naı̈ve Bayes clas-

sifier. (B–D) Nucleotide composition graphs, and sequence logos for

over-represented motifs 40 nt upstream and 30nt downstream of pA

sites (B) common to PAS-Seq and 3p seq, or uniquely found in (C)

PAS-Seq or (D) 3pseq datasets only. (E) PAS distribution. (F) Mean

number of sequencing reads contributing to a putative pA site

Fig. 3. Algorithm-filtered PAS-Seq 30 ends resemble those identified by

3pseq. Nucleotide composition, and over-represented motifs up- and

downstream of pA sites in (A) 24 hpf unfiltered PAS-Seq, (C) 24 hpf

PAS-Seq filtered by naı̈ve Bayes classifier, (D) 24 hpf 3pseq, (E) 8A fil-

tered 24hpf PAS-Seq, (F) PASþ 8A filtered 24hpf PAS-Seq. (B) PAS

distribution for unfiltered 24hpf PAS-Seq, 24 hpf 3pseq, 8A filtered

24hpf PAS-Seq, PASþ 8A filtered 24hpf PAS-Seq, naı̈ve Bayes classified

24hpf PAS-Seq
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contribute to a pA site being uniquely found in either dataset.

For example, internal oligo-dT binding may block extension

from an oligo-dT bound to the poly(A) tail (Nam et al., 2002),

thus inhibiting identification of true 30 ends in adenine-rich gen-

omic loci in PAS-Seq. Variable PAS usage due to polymorphisms

between the zebrafish strains used to generate the PAS-Seq and

3pseq datasets may also be possible (Howe et al., 2013).
To biologically cross-validate the in silico predictions, we con-

ducted two different poly(A) tail length (PAT) assays to verify a

putative pA site. In the G-tailed PAT assay (GPAT), yeast

poly(A) polymerase is used to ligate guanosines and inosines

to the 30 end of polyadenylated RNA, followed by reverse tran-

scription with an anchored poly-cytosine primer (Fig. 5A). Alter-

natively, an oligo-dT containing primer was used for reverse

transcription (dtPAT; Fig. 5B) (Murray and Schoenberg,

2008). In both assays, nested PCR was performed using a

gene-specific forward primer and an assay-specific reverse

primer to amplify the 30 end of the transcript including the

poly(A) tail, as well as gene-specific forward and reverse primers

to amplify fragments without the poly(A) tail (Fig. 5A and B).

Due to different poly(A) tail lengths or variable oligo-dT binding

along the poly(A) tail, validation of a true 30 end resulted in a

smear on an agarose gel in both assays (Fig. 5A–C). Conversely,

an internally primed site will result in no product in the GPAT

assay and a single product in the dtPAT assay (Fig. 5A, B and

D). We applied GPAT and dtPAT assays to 50 putative pA sites

in the zebrafish genome defined by our classifier (Supplementary

Table S3). Forty-two of these sites were called True by the clas-

sifier, of which 22 corresponded to annotated 30UTRs (Zv9,

ENSEMBL v68) and 20 represented novel 30 ends. All of these

True sites were amplified using the GPAT assay, indicating these

are true polyadenylated 30 ends (Fig. 5C and E; Supplementary

Table S3), including 11 novel 30 ends that were identified by

24hpf PAS-Seq but not 24 hpf 3pseq. Thirteen validated True

sites contained PASs other than the canonical AAUAAA within

40 nt upstream of the cleavage site and one lacked any consensus

motif, demonstrating that our classifier can identify 30 ends with-

out a consensus PAS (Supplementary Table S3).

Along with the putative True set, we assayed eight sites that

were classified as False, only one of which was annotated as a 30

end in ENSEMBL (Supplementary Table S3). Half of these sites

displayed a variant PAS near the putative 30 end, while the re-

maining sites contained no PAS 40nt upstream. Seven out of the

eight sites classified as False failed to amplify in the GPAT assay,

but were detected by dtPAT suggesting that they arise from in-

ternal oligo-dT priming (Supplementary Table S3; Fig. 5D, E).

Furthermore, six of these sites contained fewer than eight aden-

ines in the downstream region and were called true by the 8A

heuristic filter (Fig. 5F; Supplementary Table S3). One False site,

which did not possess a consensus PAS and contained only

three downstream adenines, was amplified by the GPAT assay

(Fig. 5E). Together, our biological cross-validation of putative

pA sites demonstrates the high accuracy of the naı̈ve Bayes clas-

sifier. Importantly, our classifier facilitated the identification of

novel pA sites from PAS-Seq allowing the discovery of new

30UTRs in the zebrafish transcriptome.

3.3 Naı̈ve Bayes classifier displays utility in other species

To determine whether our algorithm, which was trained using

zebrafish datasets, could be applied to other species, we used it to

filter mammalian datasets generated using polyA-seq, an alter-

native oligo-dT primed 30 end sequence method (Derti et al.,

2012; see following and data not shown). In this previous

study, data were filtered using an empirically derived threshold

of a log ratio, calculated as a product of mono-nucleotide fre-

quencies in the 10 nt downstream of putative 30 ends relative to

those from internal priming sites (referred to hereafter as the

‘Derti filter’). As a metric to assess the efficacy of our classifier,

we compared the results of filtering polyA-seq data with the

naı̈ve Bayes classifier to the output of the Derti filter. For ex-

ample, unfiltered polyA-seq data from human kidney exhibited

similarities to our negative training set, consistent with internal

oligo-dT priming (Fig. 6A). From approximately half million

putative 30 ends in the unfiltered data, application of the naı̈ve

Bayes classifier identified4130 000pA sites, which exhibited the

expected characteristics for true polyadenylated 30 ends (Fig. 6B).

Fig. 5. Biological validation of filtered 30 ends. (A and B) Schematics

depicting (A) G Tailed poly(A) Tail Length Assay and (B) oligo-dT

Primed poly(A) Tail Length Assay. (C) Left, UCSC genome browser

screenshot of 30end of nrp2a annotated by Ensembl (v68) and RefSeq

in 6 and 24hpf PAS-Seq and 3pseq datasets. Right, GPAT and dtPAT

assays for 30 end of nrp2a. (D) Left, UCSC genome browser (reversed to

show negative strand in same orientation as C) shows a putative false pA

site in an EST expressed in 24hpf PAS-Seq but not 24hpf 3pseq. Right,

GPAT and dtPAT assay for 30 indicated at left. (C and D) ‘þ’: reaction

included reverse transcriptase; ‘�’ : no reverse transcriptase. ‘PAT Assay

R’ denotes use of assay-specific reverse primer. ‘Gene Specific R’ denotes

use of gene-specific reverse primer. ‘G-tailed’ or ‘oligo-dT’ indicate the

method by which the initial cDNA template was made, and which assay-

specific reverse primer was used for the lanes labeled ‘PAT Assay R’.

Total RNA from 24hpf whole embryos was used for biological valid-

ation. Confusion matrices for biologically validated sites compared with

(E) naı̈ve Bayes classifier or (F) 8A filter
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In comparison, the Derti filter (Derti et al., 2012) classified

94 945 as true pA sites, which also exhibited the expected

sequence patterns (Fig. 6C). Of these, approximately 77000

were commonly assigned by the two filtering methods

(Fig. 6D). Closer inspection revealed that nearly all pA sites

identified uniquely by the Derti filter have fewer than 5 adenines

in the 10 nt downstream (Fig. 6E), consistent with the focus of

this filter on nucleotide frequencies in the downstream region

(Derti et al., 2012). In comparison, our naı̈ve Bayes classifier

identifies pA sites with all proportions of adenines in the down-

stream region, including 54 046 true pA sites called false by the

Derti filter (Derti et al., 2012). Importantly, the majority of sites

uniquely identified by our classifier possess a canonical PAS,

suggesting that they are true 30 ends (Fig. 6F). By contrast, the

majority of true sites uniquely identified by the Derti filter did

not display a PAS in the upstream region (Fig. 6F), suggesting

that many may be false-positive calls. However, without biolo-

gical cross-validation, it is difficult to assess the false-positive rate

within this group. In any event, these observations suggest that

our naı̈ve Bayes classifier, trained on zebrafish 30 end sequencing

data, performs well in the identification of pA sites from mam-

malian species. Furthermore, our classifier discovered many

more likely true positive pA sites from unfiltered data than the

Derti filter. This is likely due to the interrogation and analysis of

multiple sequence elements during the training of this classifier,

while the Derti filter is restricted to consideration of only mono-

nucleotide frequencies immediately downstream of the pA.

Based on our work, a trained naı̈ve Bayes classifier is clearly

beneficial to identify true pA sites from oligo-dT primed 30 end

sequencing data from both zebrafish and other animal species.

Additionally, this approach may also be helpful to assess and

improve the quality of 30 ends of RNA-seq transcript models

built from standard transcript annotation software, such as

Cufflinks or Scripture (Guttman et al., 2010; Trapnell et al.

2010). Indeed, application of our classifier to previously pub-

lished RNA-seq transcript models from zebrafish (Pauli et al.,

2012) suggests a significant number of transcript ends may be

due to internal oligo-dT priming, while filtering enriches for ca-

nonical and variant PAS hexamers (Supplementary Fig. S4). The

usage of our classifier could also be extended to RefSeq and

other sequence databases, as these gene models have been largely

built from oligo-dT primed cDNAs and likely contain a signifi-

cant number of incorrect 30 end annotations. Indeed, an esti-

mated 12% of ESTs labeled as 30 ends in dbEST human

(release October 04, 2001) are due to internal oligo-dT priming

(Nam et al., 2002), and our naive Bayes classifier correctly pre-

dicted that the 30 end of vegfc, as annotated by ENSEMBL in the

zebrafish genome (Zv9), is due to mis-priming (Supplementary

Table S3). Thus, naı̈ve Bayes filtering of annotated sequences in

available databases, in addition to previously published genome-

wide oligo-dT primed sequencing data, will likely lead to identi-

fication of new pA sites and eliminate false internally primed

sites. Further studies are needed to assess the performance of

the naı̈ve Bayes classifier, trained on zebrafish data, in yeast

and plants. In conclusion, the naı̈ve Bayes classifier developed

in these studies will facilitate the identification of novel pA sites

in combination with simple oligo-dT primed 30 end sequencing.
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