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ABSTRACT

Motivation: Draft de novo genome assemblies are now available for

many organisms. These assemblies are point estimates of the true

genome sequences. Each is a specific hypothesis, drawn from

among many alternative hypotheses, of the sequence of a genome.

Assembly uncertainty, the inability to distinguish between multiple

alternative assembly hypotheses, can be due to real variation between

copies of the genome in the sample, errors and ambiguities in the

sequenced data and assumptions and heuristics of the assemblers.

Most assemblers select a single assembly according to ad hoc

criteria, and do not yet report and quantify the uncertainty of their

outputs. Those assemblers that do report uncertainty take different

approaches to describing multiple assembly hypotheses and the

support for each.

Results: Here we review and examine the problem of representing

and measuring uncertainty in assemblies. A promising recent devel-

opment is the implementation of assemblers that are built according to

explicit statistical models. Some new assembly methods, for example,

estimate and maximize assembly likelihood. These advances, com-

bined with technical advances in the representation of alternative

assembly hypotheses, will lead to a more complete and biologically

relevant understanding of assembly uncertainty. This will in turn facili-

tate the interpretation of downstream analyses and tests of specific

biological hypotheses.
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1 INTRODUCTION

The low cost and increasing availability of next-generation
sequencing data have driven a growing interest in methods and

software tools for de novo genome assembly of short read

sequences. Recent surveys of assembly tools (Finotello et al.,

2012; Miller et al., 2010), practical guides (Nagarajan and Pop,

2013; Paszkiewicz and Studholme, 2010), competitions like the
Assemblathon (Bradnam et al., 2013; Earl et al., 2011) and

benchmarking tools like GAGE (Salzberg et al., 2012) highlight

the diverse ecosystem of available assemblers. New data struc-

tures, algorithms and software tools for assembly continue to be
published every month.

Many investigators have claimed that it is now possible to

assemble high quality genomes from next-generation sequencing

data when using appropriate protocols and assembly methods

(Gnerre et al., 2011; Li et al., 2010; Schatz et al., 2010).

Yet, others have expressed concern over the integrity of publicly

available draft genomes assembled from such data. Some have

described errors and shortcomings in specific draft assemblies

(Alkan et al., 2011; Ricker et al., 2012; Salzberg and Yorke,

2005), whereas others have questioned the quality of publicly

available draft assemblies in general, and advocated better qual-

ity standards for the community (Chain et al., 2009; Mardis

et al., 2002). In particular, the Assemblathon 2 competition

(Bradnam et al., 2013) found large-scale inconsistencies among

current assembly methods, suggesting they are not robust to

changes in parameters and input data, and that there is a need

for unambiguous measures of assembly uncertainty.
A genome assembly is a hypothesis consisting of a collection of

contigs (contiguous sequences) and scaffolds (groups of contigs

with gaps of known length between them) that typically cover

90% or more of the genome (Chain et al., 2009), but are often

fragmented and unordered. Current de novo assemblers use vari-

ous heuristics and algorithms to select an assembly that opti-

mizes some criteria, such as path length or graph complexity

(Miller et al., 2010); however, these optimization criteria are

typically ad hoc. This is largely because of the computational

difficulty of performing assembly on short reads, and a primary

goal for existing assembly methods has been computational

tractability and efficiency. As a result, assemblers choose a single

point estimate as their final output with sparse information

about the quality, certainty or validity of the chosen assembly,

or of alternative assembly hypotheses (many of which may have

almost as much support). In most cases, it is difficult, if not

impossible, to answer even basic questions like, ‘How well is

this contig supported by the read sequences?’ or ‘Are there alter-

native assemblies that have similar support from the data?’
Downstream analysis tools use assemblies to make their own

point estimates of other aspects of biology, such as multiple

sequence alignments, differential gene expression analyses or

phylogenetic trees. In the end, there is no accounting for how

the uncertainty is compounded at each stage. Existing tools

cannot be integrated into pipelines that propagate uncertainty

through a large multistep analysis, for example integrating

assembly uncertainty with tree uncertainty when constructing

phylogenies. The ability to propagate uncertainty about point

estimates or, preferably, to propagate entire sets of multiple

alternative hypotheses will become increasingly important as

analyses grow in complexity.*To whom correspondence should be addressed.
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Thanks to the progress on computational efficiency of genome
assembly, it is now possible to tackle the difficult goal of placing
de novo sequence assembly within an explicit statistical frame-

work. In such a framework, single assembly hypotheses selected
according to ad hoc optimality criteria are replaced by sets of
hypotheses accompanied by statistics that summarize confidence

in each.

2 VARIANTS IN ASSEMBLIES

Alternate assembly hypotheses are called variants. There are
many types of variants, but they fall into two broad categories

that we refer to as hard and soft:
Hard variants correspond to real differences present in the

sample. Hard variation can include heterozygosity, somatic

polymorphism (as in the case of cancer), polymorphism across
multiple individuals when they are pooled for sequencing or vari-
ation across individuals when they are sequenced and assembled

separately but data are then combined across assemblies. Hard
variants reflect aspects of organism biology that may or may not
be of direct interest to the investigator.

Soft variants are uncertainties that are introduced during the
sequencing and assembly process, and include library prepar-
ation artifacts and sequencing errors. They persist when there

is not enough information to resolve conflicts and identify the
true assembly. Soft variants are nuisances that investigators seek
to reduce or work around.

Discerning between hard and soft variants presents difficult
statistical and computational challenges, and is a fundamental
difficulty for metagenome assembly in particular (Charuvaka

and Rangwala, 2011). Although hard and soft variants have dif-
ferent origins, they can both be described within a common

statistical framework, as they both result in multiple assembly
hypotheses. After this common framework is in place, the next
challenge will be to differentiate between hard and soft variants,

either by eliminating soft variation, or by learning to identify
each. However this is ultimately addressed, the very existence
of hard variation is a direct challenge to the expectation that

there is a single true assembly that accurately represents an
organism’s genome.
One of the best-studied types of hard variation is heterozygos-

ity in diploid individuals. Provided enough depth of coverage,
existing statistical methods can accurately identify alleles
(Nielsen et al., 2011). In the absence of enough coverage,

though, it becomes difficult to differentiate true alleles from
sequencing errors. The identification of alleles from different
loci that are colocated on the same chromosome is called haplo-

type phasing. Phasing can be achieved computationally or experi-
mentally (Browning and Browning, 2011). Computational

phasing requires population level sampling, which is uncommon
in most studies of de novo genome assembly. Experimental phas-
ing relies on laboratory techniques that are applied during data

generation, such as developing fosmid libraries or separation of
chromosomes. This approach incurs higher costs, and it usually
involves additional computational phasing when phased haplo-

type fragments must be pieced together into larger haplotypes
(Browning and Browning, 2011). At present, phase information
from sequencing reads is not sufficient to fully determine haplo-

type phase.

3 RECORDING VARIANTS

Some assemblers report variants in their output, though without

any accompanying statistical interpretation or distinction

between hard and soft variants. Although much of the focus

has been on tools for single nucleotide polymorphism (SNP)

detection, there is interest in larger-scale structural variants as

well. Preserving and reporting ambiguities in the assembly is an

important step toward assessing assembly uncertainty, especially

if future computational methods can incorporate alternative

assemblies. Assemblers that report variants include:
ALLPATHS-LG (Gnerre et al., 2011) has a custom intermedi-

ate output format for SNPs or homopolymers. For example,

the output sequence TC{A,T}GG represents an SNP, and

TT{,T,TT}AC represents a homopolymer. The authors note

that making use of this information in downstream analyses is

an important challenge for the field.
The String Graph Assembler (SGA) (Simpson and Durbin,

2012) retains variants that are not selected by the assembly algo-

rithm, but instead of storing them in a custom format, writes them

to a separate FASTA file that can be inspected after assembly.
ABySS (Simpson et al., 2009) similarly writes multiple variants

and organizes them into two FASTA files, one for SNPs and the

other for insertions–deletions.
Cortex (Iqbal et al., 2012) and fermi (Li, 2012) are both

designed to discover variants during assembly. Both show that

structural variant detection can be improved by discovering vari-

ants during assembly rather than through simply mapping the

assembly to a reference genome.
In addition to advances in the assemblers themselves, there

have also been improvements in data formats. The FASTG

(Jaffe et al., 2012) specification addresses the problem of storing

complex polymorphisms and variants by using a graph represen-

tation for assembly output. Most assemblers’ final output uses

a linear FASTA representation, with a record for each contig

or scaffold sequence. Although this format is compact, human-

readable and a suitable representation of a correct unambiguous

assembly, in practice most assemblies include ambiguities that

cannot be represented linearly. At the opposite extreme of the

linear FASTA representation is the intermediate output provided

by most assemblers that dumps out the complete unresolved

graph structure produced during assembly. For most down-

stream applications, this output is too verbose and too raw: it

might not even include the graph traversals chosen by the assem-

bler’s heuristics or algorithms as the final assembly.

FASTG attempts a balance between these two extremes. It is

an extension of the approach taken by ALLPATHS-LG, and

specifies ‘constructs’ enclosed in brackets that can be inserted

into a typical FASTA sequence to represent local non-linear

features like gaps, alleles, tandem repeats or haplotypes. For

example, the sequence GANNNNN[5:gap:size¼(5,4..6)]

CAGGC[1:alt:allele—C,G] includes constructs for both a

gap of 4–6 bases and an SNP with a similar proportion of C and

G bases, which can therefore be interpreted as an allele.

Another example of a richer description for assembly output is

the ‘gene graph’, introduced by the GeneStitch (Wu et al., 2012)

method for reconciling and improving metagenomic assemblies.

Using alignments against a reference genome, GeneStitch iden-

tifies clusters of gene fragments that are highly similar across the

2960

M.Howison et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/23/2959/246939 by guest on 17 April 2024

,
'
very 
since
-
s
'
-
(indels)
While
,
,
't
,
 to 
,


individual genomes within the metagenome. Instead of trying

to separate the individual genes, GeneStitch merges them into

a structure called a gene graph, which is a subgraph of the

assembly graph that connects all the similar gene fragments.

The gene graph is a condensed representation of the similar

genes, and individual genes can be reconstructed by traversing

paths through the gene graph.
Another middle ground between linear representation and full

assembly graph output is to simply enumerate the full set of

possible assemblies, the approach that the SGA assembler

takes when it writes alternative contigs to an auxiliary file.

This is analogous to the approach taken by phylogenetic infer-

ence tools that generate sets of phylogenetic trees. An investiga-

tor will typically construct and report a consensus tree, which is a

lossy summary of the full set of trees according to some statistical

justification (Holder et al., 2008). Similarly, an assembler could

output the full set, but construct a consensus assembly for each

contig. The full set of assemblies is inherently redundant, and

could be compressed with generic text compression tools, like

gzip.
Although these representations are better suited to storing the

variation in assembly output than FASTA, they do not address

the statistical or computational problem of how to quantify the

uncertainty of a given assembly hypothesis. We discuss existing

approaches to these problems below.

4 MIS-ASSEMBLY APPROACHES

Earlier efforts to automate assembly validation successfully

applied statistical tests to identify ‘mis-assemblies,’ or regions

of an assembly hypothesis that violate specific statistical assump-

tions. For instance, the amosvalidate tool (Phillippy et al., 2008)

uses the compression-expansion statistic (Zimin et al., 2008) to

identify regions of an assembly where paired-end reads align

with insert sizes that deviate from an expected normal distribu-

tion. It also calculates statistics based on the overall read cover-

age, the distribution of k-mers and the presence of fragmented

read alignments.
More recently, the Recognition of Errors in Assemblies using

Paired Reads (REAPR) tool (Hunt et al., 2013) applied similar

metrics of fragment coverage and insert-size distribution to iden-

tify mis-assembled regions, and introduced the ability to call errors

at specific bases in an assembly hypothesis. Computationally, it

decides which individual bases are ‘error-free,’ meaning that the

base is supported by a specified number (by default 5) of perfectly

and uniquely aligned reads, and that the difference between the

theoretical and observed fragment coverage falls below a dynam-

ically inferred threshold. Regions with erroneous bases are

reported as mis-assemblies. The algorithm also distinguishes

between contig and scaffolding errors, and can produce a new

assembly where erroneous scaffolds are broken into separate

contigs.

5 LIKELIHOOD APPROACHES

In statistics, likelihood is the probability of the data if the data

were generated according to a specified hypothesis. In the con-

text of assembly, it is the probability of sequencing the observed

reads under a specified assembly hypothesis and model of read

generation.
Maximum likelihood estimation attempts to identify the

hypothesis that has the highest probability of producing the

observed data. A maximum likelihood assembly is the assembly

that has the highest likelihood. Maximum likelihood estimation

does not itself provide a confidence interval on any particular

hypothesis; it simply provides a way to find the hypothesis that

maximizes the probability of the data. The assembly with the

maximum likelihood may do a much better job than any other

assembly at explaining the data, or there may be millions of other

assemblies that are almost as likely. Even though a likelihood

approach does not directly quantify assembly uncertainty, it pro-

vides an explicit framework with a clear statistical interpretation

for optimizing and evaluating alternative assembly hypotheses.
The Computing Genome Assembly Likelihoods (CGAL) tool

(Rahman and Pachter, 2013) approximates the likelihood of an

assembly given the sequence reads and a generative model. To

reduce computational burden, read generation is considered only

in the region of the assembly where each read maps. The gen-

erative model incorporates separate terms for the length of a read

pair and its aligned site on the genome, and an error model for

SNPs, insertions and deletions. The generative model has to be

learned from the data. Because the distribution of insert sizes for

read pairs depends on both the sequencer and library prepar-

ation, CGAL uses the empirical distribution for the read pair

lengths. For the distribution of sites, it assumes uniform sam-

pling of read pairs across the genome. For the error model, it

assumes sequencing errors are independent events and learns the

substitution rates for each position and for each substitution

combination (because there are known biases for some sequen-

cing technologies), and the insertion and deletion rates for each

position in a read sequence. The aggregate CGAL score for an

assembly is the log of the product of the probabilities that each

individual read could have been generated from the assembly.
Although CGAL is not an assembler, it could be applied to

optimizing assembly by using the annotated likelihood score to

iteratively guide the selection of assemblies and parameter values.

In fact, a maximum likelihood genome assembler was already

proposed based on similar principles (Medvedev et al., 2009).

Like CGAL, it calculates likelihood based on the depth of read

coverage, but it does not incorporate paired-end information at

this stage. Instead, it takes the approach typical of many genome

assemblers of first assembling the contigs, then resolving conflicts

by looking for contigs that agree with the orientation and insert

size of the paired reads. Also, it requires as a parameter the

accurate size of the target genome, which is not available in all

de novo assembly projects. A related design for maximum likeli-

hood assembly (Varma et al., 2011) uses a different formulation

that starts from an approximate size and estimates the actual size

during the optimization.
One of the limitations of the maximum likelihood approach is

that it relies on complex optimizations that are polynomial time

in the number of read sequences, compared with the linear time

algorithms used by most de Bruijn graph assemblers. Also,

unlike most assembly methods described in the literature, neither

the maximum likelihood methods by Medvedev et al. nor Varma

et al. provide an open-source reference implementation.
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6 BAYESIAN APPROACHES

Instead of the probability that a given assembly hypothesis could

have generated the sequenced data (i.e. the likelihood), an inves-

tigator may be more interested in the conditional probability of

the assembly hypothesis after taking into account the sequenced

data. This is the posterior probability, PðHjDÞ, of the assembly

hypothesis, and it is related to the likelihood, PðDjHÞ, by the

Bayes’ theorem:

PðHjDÞ ¼
PðDjHÞðPðHÞÞ

PðDÞ
ð1Þ

where P(D) and P(H) are the prior probabilities on the data and

the assembly hypothesis, respectively. The priors are the prob-

ability distributions that express the uncertainty before the data

are taken into account.
There is already at least one tool that considers posterior

probabilities on assemblies, the Assembly Likelihood

Evaluation (ALE) framework (Clark et al., 2013). ALE imple-

ments an expression for the probability that an assembly is cor-

rect, and also reveals the contribution of local regions of the

assembly to this score. This is an important advance toward

assessing the uncertainty of assemblies, especially because it is

made in the context of an explicit statistical framework rather

than ad hoc optimality criteria. ALE estimates the posterior

probability of an assembly (their PðSjRÞ) by estimating the

prior probabilities (their P(S)) directly from the data (i.e. an

empirical Bayes approach) in conjunction with an approximation

of the assembly likelihood (their PðRjSÞ) in a similar fashion to

CGAL. One of the most difficult aspects of calculating a poster-

ior probability is deriving the prior probability of the read data,

P(R) (that they denote as Z). They address this challenge with a

rough but efficient approximation of Z. They then refer to the

approximated posterior probability as the ALE score.
The ALE score is a comparative measure of assembly correct-

ness and should be compared among assemblies of the same

genome from the same sequenced data. The ALE score cannot

be calculated for different datasets because of the possible

inaccuracy in approximating the prior probability of the data,

which cancels out when computing a comparative score between

difference assembly hypotheses of the same data. In contrast,

CGAL could conceivably be used to compare the likelihood of

an assembly hypothesis against different datasets (for instance,

from different sequencing technologies) because it does not

calculate the prior probabilities of the data.
Markov chain Monte Carlo (MCMC) is an alternative

approach to approximating posterior probabilities. Rather than

approximate the posterior probability of a particular assembly as

ALE does, an MCMC approach would generate a set of alter-

native assembly hypotheses. This provides a natural way to deal

with assembly uncertainty. The frequency of a particular attri-

bute of the assembly in this set is an approximation of the pos-

terior probability of that attribute. In addition to deriving this

probability, the investigator can also examine the other alterna-

tive hypotheses. An investigator could ask, for example, ‘What

are the most probable hypotheses for gene order that together

account for 90% of the posterior probability?’
To overcome the challenges of estimating the prior probability

on the data, MCMC uses the ratios of posterior probabilities so

that the prior probability on the data cancels out and does need

to be calculated (for an introduction to MCMC, see Gilks et al.,

1996). MCMC methods have been applied to related problems,

such as assembling the haplotype of resequenced human gen-

omes (Bansal et al., 2008). However, we do not know of a de

novo assembly method that has used MCMC to generate a set of

assembly hypotheses. Like maximum likelihood assembly,

MCMC assembly will have significant technical challenges with

computational cost and scalability because of the many samples

needed to construct a stable posterior distribution.

7 CONCLUSION

The pieces are now falling in place for assembly to move away

from point estimates that are selected according to ad hoc cri-

teria, toward a statistically explicit framework that provides not

only biologically relevant measures of certainty but also sets of

alternative hypotheses. This will greatly facilitate the evaluation

of assemblies, their application to specific biological questions,

improvements in assembly algorithms and integration with

downstream analyses that can then take assembly uncertainty

into account. Bioinformatics workflow frameworks, such as the

web-based framework Galaxy (Giardine et al., 2005) and the

lightweight command-line framework BioLite (Howison et al.,

2012), already provide biologists with functionality for establish-

ing provenance and reproducibility for computational analyses.

These workflow frameworks are the logical foundation for

implementing pipelines that propagate uncertainty through

complex multistage analyses.
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