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ABSTRACT

Motivation: The reliable identification of genes is a major challenge

in genome research, as further analysis depends on the correctness

of this initial step. With high-throughput RNA-Seq data reflecting

currently expressed genes, a particularly meaningful source of infor-

mation has become commonly available for gene finding. However,

practical application in automated gene identification is still not the

standard case. A particular challenge in including RNA-Seq data is

the difficult handling of ambiguously mapped reads.

Results: We present GIIRA (Gene Identification Incorporating RNA-

Seq data and Ambiguous reads), a novel prokaryotic and eukaryotic

gene finder that is exclusively based on a RNA-Seq mapping and

inherently includes ambiguously mapped reads. GIIRA extracts

candidate regions supported by a sufficient number of mappings

and reassigns ambiguous reads to their most likely origin using a

maximum-flow approach. This avoids the exclusion of genes that

are predominantly supported by ambiguous mappings. Evaluation

on simulated and real data and comparison with existing methods

incorporating RNA-Seq information highlight the accuracy of GIIRA

in identifying the expressed genes.

Availability and implementation: GIIRA is implemented in Java and

is available from https://sourceforge.net/projects/giira/.

Contact: renardB@rki.de

Supplementary Information: Supplementary data are available

at Bioinformatics online.
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1 INTRODUCTION

The reliable annotation of genes as the regions encoding the basis

for all processes in the cell is a key goal of genomic research.

Hence, numerous studies focus on revealing the structure of

genes and their controlling mechanisms to enhance the under-

standing of the functionality of proteins and their interactions

(Schrimpe-Rutledge et al., 2012; Wang et al., 2012; Wijaya et al.,

2013). Following the need for accurate gene prediction methods,

various gene finders have been developed identifying genes either

by genome sequence comparison, ab initio by using the genomic

sequence alone, evidence based by integrating different kinds of

additional external information (Goodswen et al., 2012).

Ab initio gene finders predict genes based on the presence

of open reading frames (ORFs) in the genome and in case of

eukaryotes identify intron-exon structures indicated by known

splice sites (Delcher et al., 2007; Korf, 2004; Lukashin and

Borodovsky, 1998; Majoros et al., 2004). Typically, these

approaches are based on statistical or machine learning tech-

niques such as Hidden Markov Models, and they require train-

ing data to evaluate the probability for each gene and gene

structure (Goodswen et al., 2012).
In contrast to ab initiomethods, evidence-based and compara-

tive gene finders make use of additional external information to

identify genes and their structures. Sources of information in-

clude EST libraries, messenger RNA or protein sequences. The

external evidence is compared with the genome of interest to

identify regions showing similarity to the given sequences

(Allen and Salzberg, 2005; Savidor et al., 2006; Wei and Brent,

2006). Hybrid approaches, such as AUGUSTUS (Stanke et al.,

2006), combine ab initio gene prediction with evidence from other

sources to verify the predicted genes. For an overview on gene

finding algorithms, the reader is referred to Goodswen et al.

(2012) or Guigó et al. (2006).
Despite all efforts, gene identification still faces significant chal-

lenges handling complex gene structures, rare splice sites or mu-

tations in genes (Ederveen et al., 2013; Goodswen et al., 2012).

These problems can be approached by using the knowledge avail-

able from high-throughput RNA-Seq experiments (Wang et al.,

2009). The transcriptome reflects the genes expressed in the

current condition of the cell, which provides valuable information

to identify novel genes or to confirm predicted genes. Although

RNA-Seq experiments were included in several annotation stu-

dies (Martin et al., 2010; Palmieri et al., 2012; Pickrell et al., 2012;

Sultan et al., 2008; Tu et al., 2012), so far only few gene finders

directly incorporate RNA-Seq in gene prediction.
Methods for gene expression analysis such as iReckon

(Mezlini et al., 2013), Cufflinks (Trapnell et al., 2010) and

Erange (Mortazavi et al., 2008) perform a transcript assembly

on RNA-Seq reads and thereby allow the identification of exons

and splice sites, but they do not predict reading frames and start

and stop codon for genes. For an overview of transcriptome

annotation, the reader is referred to Garber et al. (2011).

AUGUSTUS allows the integration of RNA-Seq experiments

as an additional external source for eukaryotic gene identifica-

tion (Stanke et al., 2008), whereas GeneMark (Besemer et al.,

2001; Martin et al., 2010) incorporates RNA-Seq evidence on

prokaryotic gene predictions to identify operons. The gene

finder G-Mo.R-Se (Denoeud et al., 2008) predicts gene models

based on RNA-Seq reads, but does not identify mono-exonic

genes and only incorporates non-ambiguous mappings.

Because for instance repetitive or highly similar regions,

or homologous genes lead to a substantial part of non-unique*To whom correspondence should be addressed.
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mappings, discarding ambiguously mapped reads from further
analysis may result in a significant loss of prediction accuracy.
To use the complete information contained in RNA-Seq

experiments for gene identification, we developed a RNA-Seq-

based de novo gene predictor called GIIRA (Gene Identification
Incorporating RNA-Seq and Ambiguous reads) that works on a
reference genome and reads derived in a RNA-Seq experiment.

GIIRA is primarily focused on prokaryotic gene prediction and
in particular resolves genes within the continuously expressed
region of an operon. However, GIIRA can also be applied to

predict genes and alternative transcripts for eukaryotes, and it
leverages information from spliced reads for intron identifica-
tion. Hence, it is also a useful addition to annotation pipelines,

such as MAKER (Holt and Yandell, 2011), or a good comple-
ment to other eukaryotic gene finders. The identified transcripts
are completed into gene models via a search for start and stop
codons as well as reading frame and strand prediction. Based on

the observed mapping coverage, GIIRA identifies candidate
genes that are refined in further validating steps. Ambiguous
reads are reassigned to their most likely origins using a

maximum-flow approach formulated as a linear program.
In contrast to other approaches to ambiguous read assign-

ment, such as the expectation maximization-based strategy intro-

duced in Chung et al. (2011) or ContextMap (Bonfert et al.,
2012), our approach can integrate information on the likelihood
of a read alignment not only from a fixed context (interval
of specified length) or a context solely based on the mapping.

Instead, we directly incorporate the information gained in the
process of identifying gene candidates and further the linear
program ensures a convergence to an optimal solution.

In principle, the general idea of the maximum-flow approach
can also be applied to other questions related to ambiguity
resolving.

We validate the accuracy of GIIRA in three simulations and
compare our approach with the widely used method Cufflinks as
well as the gene finders GeneMark, GLIMMER3 (Delcher et al.,

2007) and AUGUSTUS. Finally, we apply GIIRA to two real
datasets including �11 million reads from an Escherichia coli
and �6 million reads from a Saccharomyces cerevisiae RNA-
Seq experiment.

2 METHODS

As depicted in Figure 1, the proposed algorithm consists of four steps.

The input of GIIRA is a set of RNA-Seq reads that are aligned to a

reference genome using an external alignment method (Fig. 1A). Based

on the alignment, GIIRA identifies regions on the genome that are likely

to be expressed genes, in the following called gene candidates (Fig. 1B).

The identification regards the nucleotide coverage as well as splicing

events indicated by the RNA-Seq reads. For prokaryotes, these candi-

dates are regarded as expressed regions that might contain more than one

gene, hence they are refined to determine the correct gene structure.

Finally, ambiguously mapped reads are reallocated to their most likely

origins using a maximum-flow optimization approach (Fig. 1C). Based

on this reassignment, the candidate genes undergo a refinement leading to

the erasing of candidate genes and isoforms without a sufficient number

of remaining supporting reads (Fig. 1D).

2.1 Alignment analysis

GIIRA is based on an alignment of reads from a RNA-Seq experiment to

the DNA sequence of interest. For eukaryotes it is advisable—although

not strictly necessary—to use a split read mapper for this alignment to

obtain support for splicing events. GIIRA is preconfigured to call either

TopHat2 (Kim et al., 2013) or BWA (Li and Durbin, 2009) for read

mapping, but can include the results of any read mapper with output

in SAM format (Li et al., 2009). GIIRA takes all mappings reported in

the resulting SAM file into account, which includes one mapping for

unique reads and several for ambiguous reads. For performance reasons,

we only store the start positions of reads and their differences to the

reference, as well as read quality and potential splice sites.

2.2 Candidate search

2.2.1 Extraction As illustrated in Figure 1B, regions with sufficient

support of mapped reads are extracted to serve as candidate genes.

The algorithm traverses all start positions of read alignments and tests

if the coverage at these positions exceeds a minimum coverage. If this

is the case, a new candidate gene is opened and all following reads are

assigned to the currently open region. This process is continued until the

coverage falls below the coverage threshold. Then the current candidate

gene is closed and we search for a new region exceeding the minimum

coverage. As the coverage threshold is a crucial parameter in the analysis,

it can either be estimated from the given data without any a priori know-

ledge or be defined by the user.

In case of splicing events, this basic procedure is extended: A splice site

is only considered as a non-erroneous site if it has a sufficient support of

reads. By default the threshold for splice site acceptance is set equal to the

overall desired minimum coverage. In case reads overlap an accepted

splice site, they are assigned to their corresponding isoform, e.g. an

intron starting at this splice position or an ongoing exon. During this

first candidate extraction all isoforms with sufficient support by reads are

taken into account, the refinement and exclusion of erroneous alternative

isoforms are performed in subsequent steps (see Section 2.4).

Details on the candidate search and the choice of coverage thresholds

are given in the Supplementary Material.

2.2.2 Prokaryotic gene structuring Prokaryotic candidates undergo

an additional extraction step, as prokaryotic operons contain a continu-

ously expressed region including one or more genes that have to be

identified respecting the present ORFs. To determine the most likely

Fig. 1. Workflow of GIIRA: given a genomic sequence and a set of RNA-Seq reads, reads are mapped to the reference (A) and the resulting alignment is

then analyzed by GIIRA. Candidate genes are extracted (B) and ambiguous reads are reassigned using a maximum-flow optimization (C). Finally,

candidate genes are evaluated based on the reallocated reads (D)
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gene structure, first all forward and reverse ORFs of the candidate

sequence are extracted. Second, the direction is selected that provides a

set of ORFs that covers a large number of bases in this operon while

restricting the overall number of ORFs. To achieve a trade-off between

these two goals, we adopt and alter a scoring metric from alignment

evaluations (Vingron and Waterman, 1994).

The set of all possible ORFs in a candidate sequence with length L is

denoted as O. An ORF oi 2 O contributes with its length li to the number

of covered bases; hence it is assigned a positive (‘match’) score mi ¼ li. If

two or more ORFs oi and oj overlap, the overlapping region is assigned a

negative score ovij such that no region is counted twice. To avoid the

suboptimal solution of simply selecting all ORFs present in O, we enforce

sparsity by introducing an ORF open penalty pi for each ORF oi:

pi ¼ �
L

li
�
lmax

li

� �
;

with lmax denoting the length of the longest ORF included in O.

This penalty is smaller for longer ORFs, as these are preferable to

short ones because they cover more bases. Further, pi reflects whether

oi is comparably short or long in relation with the ORFs present in O.

This can be combined in a linear program that maximizes the sum of

all scores:

max
X
i2O

ðmi þ piÞ þ
X
i 6¼j

ovi j;

Details on the scoring metric and the linear program are given in the

Supplementary Material.

2.3 Maximum-Flow optimization

In previous steps, all read mappings contributed equally to the extraction

of candidate regions, even if a read had multiple mappings with similar

quality.

However, as each read can only arise from one genomic locus, we aim

at reassigning ambiguously mapped reads to their most likely origin. To

do so, we use a maximum-flow representation depending on the gathered

information of extracted gene candidates.

The rationale behind this approach is that if several genes compete for

the same read, their overall read coverage and the presence of support

from unique reads indicate the most likely origin of this read. Both

factors do not only enhance the probability for a candidate to be

chosen, but also decrease the chances of the competitors such that the

number and quality of the competitors directly affect the choice for

the best origin. Further, also the ambiguity of the read itself is taken

into account by weighting the influence of reads on candidate quality

by the number of their alignment positions. The more alignments a

read has, the less it supports each single gene it is mapped to.

The problem of assigning each read to exactly one gene candidate can

be formulated as a network problem as illustrated in Figure 2. We define

a network G ¼ fN,Eg with edge set E and node set N ¼ R [ C [ s [ t

with nodes r 2 R representing reads and nodes c 2 C representing gene

candidates, respectively. Source node s and target node t are defined

for technical reasons. Further, all edges are directed and an edge

ei j 2 E between two nodes represents that read ri 2 R is assigned to

gene cj 2 C. Note that each edge has a capacity, which can be understood

as the maximal input that can pass through this edge. In contrast, nodes

have an unlimited throughput.

The aim of the maximum-flow is to set all capacities ’i j (belonging to

edges eij connecting a read ri to a candidate cj) in a way that the flow

passing from source to target node is maximized:

max
X
ei j2E

’i j;

Each edge originating from the source has an unlimited capacity. The

capacity ’i j of the edges connecting reads and their possible correspond-

ing genes is restricted by the following condition:

0 � ’i j � yi j;

where yi j 2 f0, 1g are the binary variables that denote whether the read ri
is assigned to gene cj (yi j ¼ 1) or not (yi j ¼ 0). In other words, if a read is

assigned to a gene, the corresponding edge connecting both nodes has

a capacity with a maximal value of 1. If the read is not assigned, the

capacity is zero.

In addition, we require all multiple reads to be assigned to exactly one

candidate, as reflected in the constraint
P

j yi j ¼ 1. Each gene has a max-

imal number of reads that can be assigned, depending on the support of

reads for this gene and the support for its competitors. Because for each

node the input flow has to equal the output flow, this maximum is given

by the capacity !j of the edges connecting gene nodes to the target node:X
ijei j2E

’i j � !j;

where !j is calculated as follows:

!j ¼
bjP

ck2Pj

buk
;

Here, bj is the average base coverage of gene cj derived by all its mapping

reads, where in contrast buj is the coverage derived only by reads that map

uniquely to the corresponding gene. The set Pj contains all genes that

directly compete with cj for ambiguously mapped reads, or in other

words, that share reads with gene cj. For illustration, refer to Figure 2:

here P2 consists of c1 and c3, whereas P1 only includes c2 because c1 only

shares reads with c2.

Allowing genes to influence their competitors with the help of their

own likeliness ensures that genes with an overall high coverage are pre-

ferred over genes with less coverage. Otherwise genes with no or only few

unique reads could be preferred over genes with a high unique coverage,

as long as they have enough multiple hits.

The maximum-flow problem is formulated as an integer linear pro-

gram including the constraints described earlier in the text. This program

is solved using the IBM CPLEX academic version V12.4 (CPLEX, 2011)

or, as a slower alternative, the open-source GLPK solver (GLPK, 2006).

2.4 Candidate refinement and scoring

The maximum-flow optimization identifies a unique position for each

read such that the previously extracted gene candidates have to be refined

according to the new assignment of reads. If a gene candidate or an

alternative isoform lost all of its supporting reads, it is regarded as an

Fig. 2. Simplified example for a maximum-flow network representation

passing flow from source node s to target node t. The source node is

connected to the nodes representing reads (ri), which are connected with

all genes they were mapped to (cj). The edge labels indicate the capacity

for the throughput that is allowed to be passed from one node to the

other (representing the support of the read to the corresponding candi-

date gene)

608

F.Zickmann et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/5/606/245431 by guest on 20 M
arch 2024

:
,
''
''
since
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt577/-/DC1
F
Optimization
:
s
s
Since
 not only
above
Refinement 
Scoring
:


artifact of ambiguous read mappings and is thus erased. All remaining

genes are evaluated in a scoring process according to their exon length lj,

their read coverage and the quality of their assigned reads. It is also of

relevance whether the corresponding reads are mapped ambiguously, as

ambiguity implies more uncertainty for the gene and thus leads to a

smaller score. The final gene score sj for gene cj is calculated as follows:

sj ¼
1

lj
�
X
ijei j2E

li � qi
Mi

;

where qi denotes the quality of read, ri, li its length and Mi its total

number of mappings. GIIRA reports the identified genes and transcripts

in GTF annotation format, including additional information on coverage

and ambiguous read support. This allows an easy post-processing to verify

genes for follow-up analyses (refer to the Supplementary Material for

details).

3 EXPERIMENTAL SETUP

To evaluate GIIRA with regard to prediction accuracy and to
compare it with existing methods given a known ground truth,

we use a variety of different datasets to avoid any design bias
toward a specific organism. We generated a prokaryotic simu-

lated dataset based on E.coli (NCBI-Accession: NC_000913.2)
and two eukaryotic simulations based on chromosome 15 of the
human genome (NC_000015.9) and chromosome 4 of

S.cerevisiae (NC_001136.10), respectively. Based on these data,
we compare GIIRA with Cufflinks, GLIMMER3 and

GeneMark in the prokaryotic simulation and to Cufflinks and
AUGUSTUS in the eukaryotic simulations.
As GeneMark is originally an ab initio gene predictor that

does not include RNA-Seq information, we used the framework
proposed in Martin et al. (2010) that combines GeneMarkS
(Besemer et al., 2001) ab initio predictions with the program

ParseRnaSeq to include RNA-Seq evidence (refer to the
Supplementary Material for details on the applied pipeline).

Note that in this framework the resulting predictions cover
operons rather than structural genes.
Further, to demonstrate the influence of ambiguous mappings

on the prediction accuracy, we configured and compared a
second version of GIIRA that excludes ambiguous mappings
from further analysis.

The simulation setup uses the read simulator Mason
(Holtgrewe, 2010) applied to the NCBI reference annotation
for each organism of interest. In this annotation the coding

sequence of each known isoform appears as a consecutive
sequence; hence, the simulated reads show similar characteristics

as real RNA-Seq reads because they cover alternative isoforms,
span introns (if existing in the dataset) and show a coverage
profile typical for gene expression. The simulated reads were

aligned to the reference genome using TopHat2 (Kim et al.,
2013), and the resulting alignment served as the starting point

for all compared methods.
To demonstrate the performance of GIIRA on a real prokary-

otic dataset, we applied GIIRA, Cufflinks, GLIMMER3 and

GeneMark to a mapping of 11 million reads (NCBI-Accession:
SRX180743) from E.coli. This dataset contains a large propor-
tion of ambiguous mappings as well as high coverages in the

areas coding for ribosomal RNA, posing a challenge to distin-
guish false from correct gene loci. As GIIRA is also applicable to

eukaryotic organisms, a proof of principle application to a real

S.cerevisiae dataset comprising 6 million reads (SRX187114) was
performed comparing GIIRA and Cufflinks. For detailed infor-
mation on the experimental setup and parameter settings the

reader is referred to the Supplementary Material.
To evaluate the compared methods following accepted stand-

ards, the resulting gene predictions reported by the different

methods were analyzed using the framework provided by
Cufflinks in the analysis tool Cuffcompare (Trapnell et al.,
2012) with the annotated coding sequences of NCBI as a refer-

ence transcript set. Here, the specificity and sensitivity for base
level, exon, transcript, locus and intron level are reported, fol-

lowing the guidelines presented in Burset and Guigó (1996).
Following this framework, we also report fuzzy measures of
these quantities, which report whether correct identification

were found in proximity even though the precise location
might have been missed. These numbers complement the exact
numbers, for instance to give an impression of how many exons

have been predicted almost completely but without the exact
boundary. To ensure a fair comparison between methods, we

masked all direction information in the Cuffcompare analysis,
as Cufflinks does not report any frame information in case no
splicing events occur. In addition, we generated receiver operat-

ing characteristic (ROC) curves complemented by calculating the
F-measure (van Rijsbergen, 1979) for our measures of sensitivity
and specificity. For further details on the comparison framework

and the calculation of sensitivity and specificity refer to the
Supplementary Material.

Finally, for the two real datasets and the human simulation,
we performed an alternative evaluation study based on sampling
a fixed number of predictions for all compared methods. This

way the measure of accuracy is independent of the overall
number of predictions of each tool. The results of this evaluation
are included in the Supplementary Material.

4 RESULTS

In our study, we intend to demonstrate the applicability of
GIIRA on different organism types and the effect of including

ambiguous mappings in the analysis. Thus, a crucial point is the
proportion of ambiguously mapped reads in the alignment. All
mappings showed ambiguity, although in varying levels: with

6.6% the simulated E.coli data had the lowest proportion of
ambiguous mappings, whereas the real E.coli experiment
showed the highest proportion with 97%. The human simulation

showed 22.8% and the yeast datasets 19% ambiguous hits,
respectively. Note that the large proportion on the real E.coli

data is due to a high level of ribosomal RNA contamination
within the sample (data not shown). Without contamination,
the ambiguity is �5%, similar to the mapping proportion of

the simulated E.coli dataset that did not include contaminants.
Details for all mapping results and system requirements of
GIIRA are included in the Supplementary Material.

4.1 Prokaryotic datasets

Table 1 shows the Cuffcompare comparison between Cufflinks,

GIIRA, GeneMark and GLIMMER3 for the E.coli simulation
and the real E.coli dataset, respectively.
Because the reads were derived directly from the annotated

genes, the simulation reflects the ability of the compared
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methods to identify expressed regions and to resolve overlaps.
Cufflinks, GLIMMER3 and GIIRA yield a high accuracy on the
base level, with GIIRA being more specific than Cufflinks and

GLIMMER3, whereas GLIMMER3 is slightly more sensitive
than GIIRA. Compared with GeneMark, all methods show a
sensitivity and specificity increased by more than 20%. Because

only GIIRA and GLIMMER3 focus on extracting structural
genes rather than operons or expressed areas, it is not surprising
that on exon and locus level both methods show clearly better

accuracy than the competing methods (refer to Table S4 and Fig.
S5 in the Supplementary Material). In the E.coli simulation,
GIIRA yields more accurate results than GLIMMER3 with sen-

sitivity and specificity increased by up to 6 and 11%, respectively,
on the locus level. It should be noted that for Cufflinks only the
fuzzy exon and locus level are of relevance, as Cufflinks does not

predict start and stop codons and thus regularly misses bases at
the start and end of genes. The fuzzy category covers these bases
because here not only a perfect match, but also a match in range

around the correct result is accepted. For GIIRA, the fuzzy Sn
and Sp are only slightly increased compared with the perfect
match Sn and Sp, indicating a high accuracy in predicting the

correct frame for an expressed region.

It should be noted that for the real E.coli dataset Sn and

Sp values are only relative measurements to compare the four

methods, but cannot be regarded as absolute numbers because

not all of the genes in E.coli are necessarily expressed at the same

time. Thus, an additional analysis based on a subset of likely

expressed reference genes is included in the Supplementary

Material. For this dataset, it was not only important to identify

expressed regions and distinguish contaminants but to also cor-

rectly predict genes within the expressed areas. This is reflected

in the low sensitivity and specificity values for Cufflinks and

GeneMark, as both methods have a scope differing from iden-

tifying structural genes.
As shown in Table 1 and also in Table S4 and Figure S6 in the

Supplementary Material, GLIMMER3 appears to yield the best

prediction accuracy on all compared levels. However, the values

obtained for GLIMMER3 do not reflect the prediction of the

actually expressed genes because it is the only compared method

that exclusively predicts ab initio without including RNA-Seq

evidence. For the purpose of completeness, we included the

measures of sensitivity and specificity in the Cuffcompare ana-

lysis; however, in our comparison we focus on the three methods

capable of RNA-Seq integration.

GeneMark and GIIRA yield comparable results on the base

sensitivity level. However, GIIRA is more specific, as GeneMark

covers large parts of the E.coli genome with operons without

indicating the correct locus of the included genes. As illustrated

in Figure 3 and in Table S4 and Figure S6 in the Supplementary

Material, GIIRA performs better than Cufflinks and GeneMark

on exon and locus level. GIIRA achieves a good prediction

accuracy of the reference genes, whereas Cufflinks only predicts

the expressed regions without indicating the included genes.

GeneMark predicts operons, although these predicted regions

also cover not expressed areas and can also span more than

one operon (indicated by reference genes in different directions).

4.2 Eukaryotic datasets

Although GIIRA was primarily designed as a prokaryotic gene

predictor it is also applicable to eukaryotes as examined on a

simulated human and a simulated and real yeast dataset.

Eukaryotic data pose challenges different from prokaryotic

data; instead of distinguishing operons and determining gene

structures, here many genes have alternative splice sites and

Fig. 3. Exemplary excerpt of the gene predictions of GIIRA, Cufflinks, GLIMMER3 and GeneMark for the gene region starting at position 87 000,

illustrated in Geneious (Kearse et al., 2012). GIIRA (transcripts in red and genes in orange) achieves a good prediction accuracy of the gray reference

genes (which overlap when shown in different rows), whereas Cufflinks (blue) only predicts expressed regions without distinguishing genes. GLIMMER3

(yellow) achieves a good prediction accuracy for actually expressed genes, although it also predicts not expressed genes (e.g. on the right) because it does

not consider RNA-Seq information. GeneMark (green) predicts operons, although these predicted regions also cover non-expressed areas

Table 1. Cuffcompare analysis for the simulated (1) and real (2) E.coli

dataset

Method (1) E.coli simulation (2) E.coli real

Sensitivity Specificity Sensitivity Specificity

GIIRA 96.5 97.7 61.4 93.3

Cufflinks 91.1 92.5 40.7 72.2

GeneMark 69.2 66.5 56.1 47.9

GLIMMER3 96.7 94.6 96.7 94.6

Note: The highlighted numbers indicate the best results on the base level for sensi-

tivity and specificity, respectively, for GIIRA, Cufflinks, GeneMark and

GLIMMER3. Note that for the real E.coli dataset sensitivity and specificity

values are only relative measurements to compare the four methods, but cannot

be regarded as absolute numbers. As opposed to our simulation, where all anno-

tated genes are represented, not all of the genes in E.coli are necessarily expressed at

the same time. Thus, in particular the values for GLIMMER3, the only exclusively

ab initio method, do not reflect the genes actually expressed but arise from the

prediction of the complete set of genes.
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various alternative isoforms are present. In this experiment, we
compared GIIRA with Cufflinks as well as AUGUSTUS as an

example of a hybrid gene prediction approach. AUGUSTUS can
incorporate information from RNA-Seq experiments, and here
the filtered TopHat2 mapping was included according to the

instructions by the authors (refer to the Supplementary
Material for details). As shown in Table 2 and in Figure S7 in
the Supplementary Material, GIIRA yields the most accurate
predictions on the base level as well as on the fuzzy exon and

transcript level, whereas Cufflinks is more accurate in predicting
introns, especially exact intron-chains. Further, on the exact exon
and intron level GIIRA yields a sensitivity comparable with the

best values (obtained by AUGUSTUS), whereas it is clearly
more specific with an increase of more than 7 and 11%, respect-
ively. This is also reflected on the base level: here, AUGUSTUS

also yields the lowest prediction specificity due to a high number
of incorrectly predicted exons and their corresponding introns.
However, on the locus level the hybrid prediction method
AUGUSTUS outperforms GIIRA and Cufflinks by �10% in

sensitivity and 7% in specificity.
In summary, when comparing the methods that are exclusively

based on RNA-Seq information, we see comparable results, with

GIIRA obtaining a better sensitivity and specificity on all levels
other than intron and intron-chain.
The direct comparison between GIIRA with and without

ambiguous reads shows that the prediction sensitivity is increased
for all levels when ambiguous mappings are included. The effect
is especially pronounced on the exon and intron level, where

including ambiguous reads reduces the lack of sensitivity by

up to one third. Interestingly, the intron predictions become
more specific when ambiguous mappings are excluded, indicating

that a number of erroneous introns is due to ambiguous
split reads.
As illustrated in Figure 4 and in Table S7 in the

Supplementary Material, also for the S.cerevisiae dataset a loss
in identifications can be observed when ambiguously mapped
reads are disregarded, in particular the sensitivity in correctly

predicted exonic bases is reduced by 8%. Overall, with more
than 80% correctly predicted exonic bases GIIRA yields the
highest sensitivity, whereas both Cufflinks and GIIRA are com-

parable in specificity. Cufflinks is more conservative than GIIRA
and yields a higher number of exonic bases missed due to not

predicting a complete reference exon.
The results for the simulated yeast dataset are included in the

Supplementary Material. Here, the Cuffcompare analysis and

ROC curve show a superior prediction accuracy of GIIRA in
comparison with Cufflinks and to GIIRA excluding ambiguous
reads. Only the sensitivity of intron and intron-chain predictions

is slightly smaller for GIIRA than for Cufflinks.

5 DISCUSSION

We introduced GIIRA as a gene finder that identifies potential
coding regions exclusively based on mapping of reads from

an RNA-Seq experiment. Unlike other gene predictors, GIIRA
also includes ambiguouslymapped reads in the analysis,which im-
proves on the prediction accuracy as demonstrated for various

datasets with different levels of ambiguity. As shown in Section 4,

Table 2. Cuffcompare analysis for the simulated human data

Method Base Exon Intron Intron-

chain

Transcript Locus

Sensitivity

GIIRA 97.2 85.7 91 44.6 38.5 59.1

GIIRA_w/o 93.5 80.1 85.6 43.6 37.9 57.2

Cufflinks 93 71.6 86.7 48.8 0.6 56.2

AUGUSTUS 93.4 88.6 91.9 45.4 39.3 59.7

Specificity

GIIRA 98 89.1 96.7 43.3 34.9 43.9

GIIRA_w/o 98.4 88.4 98.4 44.3 34.1 39.8

Cufflinks 97.8 78.2 97.3 51.7 0.5 44

AUGUSTUS 82.3 81.4 85.3 49.1 38.1 44.8

Fuzzy sensitivity

GIIRA 89.8 91.7 58 44.9 63.5

GIIRA_w/o 84.2 86.1 53.7 43 60

Cufflinks 85.2 87.2 63.2 36 60.3

AUGUSTUS 89.4 92.3 70.2 40.6 74.3

Fuzzy specificity

GIIRA 93.4 97.4 56.3 40.6 47.1

GIIRA_w/o 92.9 99 54.5 38.7 41.7

Cufflinks 93 97.8 67 35.5 47.2

AUGUSTUS 82.1 85.7 75.9 39.4 54.9

Note: The highlighted numbers indicate the best results for each criterion for sen-

sitivity and specificity for GIIRA with ambiguous reads, GIIRA without ambigu-

ous reads (GIIRA_w/o), Cufflinks and AUGUSTUS. Note that in case of fuzzy

sensitivity and specificity not only a perfect match but also a match in a range

around the ground truth result is accepted.

Fig. 4. ROC comparing the proportion of correctly and incorrectly pre-

dicted exonic bases for Cufflinks and GIIRA for yeast chromosome 1,

with GIIRA applied in two modes: including (‘GIIRA_w/_ambiguous_

reads’) and excluding ambiguous reads (‘GIIRA_w/o_ambiguous_

reads’). Including ambiguous reads increases the sensitivity by up to

8% at constant specificity. The corresponding F-measures are 75.8 for

Cufflinks, 78.9 for GIIRA with ambiguous reads and 75.3 for GIIRA

without ambiguous reads. Dashed lines indicate the number of bases

missed due to not identifying a reference exon. Note that the proportion

of false predictions is reported on a logarithmic scale
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already a comparably small number of ambiguous reads can sub-
stantially contribute to the ambiguity of a mapping. Disregarding
this information leads to a loss in sensitivity, e.g. for genes sharing
homologous regions or present in high copy numbers (refer

to Section 4.2, where including ambiguous reads enhanced the
sensitivity of exon predictions by up to one-third).
GIIRA accurately predicts the correct genes for prokaryotic

transcripts as demonstrated in Section 4.1. It identifies the
most likely set of genes explaining the expressed region using
an alignment scoring adaptation coupled with a linear program

formulation. In comparison with existing approaches capable
of RNA-Seq integration, GIIRA has two major benefits: (i) it
shows overall increased prediction accuracy and (ii) it predicts

structural genes themselves rather than focusing on operons such
as GeneMark or transcripts without indicating start and stop
codons such as Cufflinks.
Although GIIRA was primarily designed for prokaryotic gene

prediction, it can also be applied to eukaryotic gene prediction as
an addition to existing annotation pipelines or a complement
to other gene finders. For eukaryotic genomes, the complexity

of alternative splicing events poses a critical challenge because
GIIRA does not work with splice graphs to combine exons,
but evaluates each splice site independently from others. As illu-

strated in Section 4.2, compared with the other methods GIIRA
is sensitive in predicting exons and transcripts. It also yields a
high accuracy in predicting introns, but is less accurate in com-
bining them to the correct intron-chain. For instance, a challenge

arises for GIIRA if two alternative isoforms share an exon where
one isoform ends with this exon and the other isoform proceeds
with other exons. For GIIRA, both isoforms appear to be

continued with other exons and it assigns an incorrect intron-
chain. Because Cufflinks uses a graph theory approach to
evaluate splice sites, it is less affected by this phenomenon and

on the intron-chain level it, hence, yields higher prediction
accuracy than GIIRA. AUGUSTUS, as a hybrid gene predictor
using non-ambiguous RNA-Seq mappings as external evidence,

is less specific than the compared methods in regard to exon
prediction but is superior in locus prediction.
Because GIIRA is exclusively based on RNA-Seq informa-

tion, it can only predict genes currently expressed in the organism

of interest and thus does not necessarily provide a complete
annotation of all encoded genes.
GIIRA provides two frameworks to control the number of

false-positive predictions: (i) to filter contaminants and sequen-
cing artifacts and (ii) to verify the reported gene predictions.
It can identify regions with an extremely large coverage

compared with the average coverage to be sequencing artifacts
or other errors such as contaminants. In case of the real E.coli
dataset, this outlier identification filtered out most of the riboso-
mal RNA contaminants. Further, GIIRA reports additional

information on coverage and ambiguous read support for each
prediction. This enables an easy post-processing of the output
allowing a trade-off of sensitivity and specificity adjusted to

the intended follow-up analysis. Note that although GIIRA is
independent from any a priori information, it is possible to use
such information (if present) to improve the prediction accuracy.

For instance, if a reference annotation is already available, dif-
ferent runs of GIIRA can be compared using the Cuffcompare
framework to identify an optimal parameter setting.

6 CONCLUSION

GIIRA is a gene prediction method that identifies potential

coding regions exclusively based on the mapping of reads from

an RNA-Seq experiment. It was foremost designed for prokary-

otic gene prediction and can resolve genes within the expressed

region of an operon. However, it is also applicable to eukaryotes

and predicts exon intron structures as well as alternative isoforms.

Unlike other gene finders, GIIRA also incorporates ambiguously

mapped reads in the gene identification, which improves the

sensitivity of predictions in particular for genes sharing homolo-

gous regions or present in more than one copy on the genome.

As shown for several datasets, GIIRA performs favorably in

comparison with existing approaches, in particular for prokary-

otes. Further, GIIRA allows an easy post-processing of the

predicted genes to choose the best trade-off between sensitivity

and specificity adjusted to the intended follow-up analysis.
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