
Vol. 30 no. 7 2014, pages 923–930
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt656

Sequence analysis Advance Access publication November 13, 2013

featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features
Yang Liao1,2, Gordon K. Smyth1,3 and Wei Shi1,2,*
1Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052,
2Department of Computing and Information Systems and 3Department of Mathematics and Statistics, The University of
Melbourne, Parkville, VIC 3010, Australia

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Next-generation sequencing technologies generate mil-

lions of short sequence reads, which are usually aligned to a reference

genome. In many applications, the key information required for down-

stream analysis is the number of reads mapping to each genomic

feature, for example to each exon or each gene. The process of

counting reads is called read summarization. Read summarization is

required for a great variety of genomic analyses but has so far

received relatively little attention in the literature.

Results: We present featureCounts, a read summarization pro-

gram suitable for counting reads generated from either RNA or gen-

omic DNA sequencing experiments. featureCounts implements

highly efficient chromosome hashing and feature blocking techniques.

It is considerably faster than existing methods (by an order of

magnitude for gene-level summarization) and requires far less com-

puter memory. It works with either single or paired-end reads and

provides a wide range of options appropriate for different sequencing

applications.

Availability and implementation: featureCounts is available under

GNU General Public License as part of the Subread (http://subread.

sourceforge.net) or Rsubread (http://www.bioconductor.org) software

packages.
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1 INTRODUCTION

Next-generation (next-gen) sequencing technologies are revolu-
tionizing biology by providing the ability to sequence DNA at

unprecedented speed (Metzker, 2009; Schuster, 2008). The com-

putational problem of mapping short sequence reads to a refer-

ence genome has received enormous attention in the past few

years (Fonseca et al., 2012; Langmead et al., 2009; Li and

Durbin, 2009; Liao et al., 2013; Marco-Sola et al., 2012), and

the rapid development of fast and reliable aligners is one of the

success stories of bioinformatics. Raw aligner output, however, is

not usually sufficient for biological interpretation. Read mapping

results have to be summarized in terms of read coverage

for genomic features of interest before they can be interpreted

biologically. One of the most ubiquitous operations that

forms part of many next-gen analysis pipelines is to count the

number of reads overlapping predetermined genomic features

of interest. Depending on the next-gen application, the gen-

omic features might be exons, genes, promotor regions, gene

bodies or other genomic intervals. Read counts are required

for a wide range of count-based statistical methods for differen-

tial expression or differential binding analysis (Oshlack et al.,

2010).
Despite its importance in genomic research, the read counting

problem has received little specific attention in the literature. The

problem may appear superficially simple but in practice has

many subtleties. Read count programs need to accommodate

both DNA and RNA sequencing as well as single and paired-

end reads. The reads or paired-end fragments to be counted may

incorporate insertions, deletions or fusions relative to the refer-

ence genome, and these complications need to be accounted for

when comparing the location of each read or fragment to each

possible target genomic feature. When the number of features is

large, the computational cost of read counting can be compar-

able with that of the read alignment step.
DNA sequence reads arise from a variety of technologies

including ChIP-seq for transcription factor binding sites

(Valouev et al., 2008), ChIP-seq for histone marks (Park, 2009)

and assays that detect DNA methylation (Harris et al., 2010).

The genomic features of interest for DNA reads can usually be

specified in terms of simple genomic intervals. For example, Pal

et al. (2013) counted reads associated with histone marks by gene

promotor regions and by whole gene bodies. Ross-Innes et al.

(2012) counted reads overlapping with intervals identified by a

peak caller (Zhang et al., 2008).
Counting RNA-seq reads is somewhat more complex because

of the need to accommodate exon splicing. One way is to count

reads overlapping each annotated exon, an approach that can be

used to test for alternative splicing between experimental condi-

tions (Anders et al., 2012; Reyes et al., 2013). Another common

approach is to summarize counts at the gene level, by counting

all reads that overlap any exon for each gene (Anders et al., 2013;

Bhattacharyya et al., 2013; Man et al., 2013). Gene annotation

from RefSeq (Pruitt et al., 2012) or Ensembl (Flicek et al., 2012)

is often used for this purpose.

Read counts provide an overall summary of the coverage for

the genomic feature of interest. In particular, gene-level counts

from RNA-seq provide an overall summary of the expression

level of the gene but do not distinguish between isoforms when*To whom correspondence should be addressed.
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multiple transcripts are being expressed from the same gene.

Reads can generally be assigned to genes with good confidence,

but estimating the expression levels of individual isoforms is in-

trinsically more difficult because different isoforms of the gene

typically have a high proportion of genomic overlap. A number

of model-based methods have been developed that attempt to

deconvolve the expression levels of individual transcripts for each

gene from RNA-seq data, essentially by leveraging information

from reads unambiguously assigned to regions where isoforms

differ (Li and Dewey, 2011; Trapnell et al., 2010). This article

concentrates on the read count problem, which is generally ap-

plicable even when the sequencing depth is not sufficient to make

transcript level analysis reliable. Many statistical analysis meth-

ods have been developed to detect differential expression or dif-

ferential binding on the basis of read counts (Anders and Huber,

2010; Auer and Doerge, 2011; Hardcastle and Kelly, 2010; Li

et al., 2012; McCarthy et al., 2012; Wu et al., 2013). Recent

comparisons have concluded that the read count methods per-

form well relative to model-based methods for the purposes of

gene-level differential expression (Nookaew et al., 2012;

Rapaport et al., 2013) or detection of splice variation (Anders

et al., 2012).

Only a handful of general purpose read count software tools

are currently available. The software packages GenomicRanges

(Aboyoun et al., 2013) and IRanges (Pages et al., 2013), de-

veloped by the core team of the Bioconductor project

(Gentleman et al., 2004), include functions for counting reads

that overlap genomic features. The countOverlaps function of

IRanges is designed for counting reads overlapping exons or

other simple genomic regions, whereas the summarizeOverlaps

function of GenomicRanges is designed for counting reads at

the gene level. Another tool is the htseq-count script distributed

with the HT-Seq Python framework for processing RNA-seq or

DNA-seq data (Anders, 2013). All of these are popular and well-

tested software tools, but all make extensive use of programming

in the interpreted computer languages R or Python and none are

fully optimized for efficiency and speed. BEDTools is a popular

tool for finding overlaps between genomic features that can be

used to count overlaps between reads and features (Quinlan and

Hall, 2010). It is fully implemented in the compiled language

Cþþ, making it faster than the aforementioned tools. It is, how-

ever, not specifically designed for RNA-seq data, so can count

reads for exons or interval features only, similar to

countOverlaps.

This article presents a highly optimized read count program

called featureCounts. featureCounts can be used to quantify

reads generated from either RNA or DNA sequencing

technologies in terms of any type of genomic feature. It imple-

ments chromosome hashing, feature blocking and other strate-

gies to assign reads to features with high efficiency. It supports

multithreading, which provides further speed improvements

on large data problems. It is available either as a Unix command

or as a function in the R package Rsubread. In either case, all

the core functionality is written in the C programming

language. The R function is a wrapper for the compiled C

code that provides the convenience of the R programming envir-

onment without sacrificing any of the efficiency of the C

implementation.

2 DATA FORMATS AND INPUTS

2.1 Input data

The data input to featureCounts consists of (i) one or more files

of aligned reads in either Sequence Alignment/Map (SAM) or
Binary Alignment/Map (BAM) format (Li et al., 2009) and (ii) a

list of genomic features in either general feature format (GFF)
(Wellcome Trust Sanger Institute, 2013) or simplified annotation

format (SAF) (Shi and Liao, 2013b). The read input format

(SAM or BAM) is automatically detected and so does not
need to be specified by the user. Both the read alignment and

the feature annotation should correspond to the same reference

genome, which is a set of reference sequences representing
chromosomes or contigs. For each read, the SAM or BAM file

gives the name of the reference chromosome or contig to which

the read mapped, the start position of the read on the chromo-
some or contig and the so-called Concise Idiosyncratic Gapped

Alignment Report (CIGAR) string giving the detailed alignment
information including insertions and deletions and so on relative

to the start position.
The genomic features can be specified in either GFF or SAF

format. The SAF format is the simpler and includes only five

required columns for each feature: feature identifier, chromosome
name, start position, end position and strand. These five columns

provide theminimal sufficient information for read quantification

purposes. In either format, the feature identifiers are assumed to
be unique, in accordance with commonly used Gene Transfer

Format (GTF) refinement of GFF (Brent Lab, 2013).
The number of reference sequences may be small or large de-

pending on the application. For well-established genomes, the
number of reference sequences is equal or close to the number

of chromosomes. The number of reference sequences can

be, however, much larger for genomes with incomplete or low-
quality assemblies because each contig becomes a reference

sequence. RNA-seq reads are sometimes aligned to the transcrip-

tome instead of to the genome. In this case, there may be hun-
dreds of thousands of transcripts and each transcript becomes a

reference sequence.
featureCounts supports strand-specific read counting if strand-

specific information is provided. Read mapping results usually

include mapping quality scores for mapped reads. Users can op-
tionally specify a minimum mapping quality score that the as-

signed reads must satisfy.

2.2 Single and paired-end reads

Reads may be paired or unpaired. If paired reads are used, then

each pair of reads defines a DNA or RNA fragment bookended

by the two reads. In this case, featureCounts will count fragments
rather than reads. featureCounts automatically sorts reads by

name if paired reads are not in consecutive positions in the

SAM or BAM file.

2.3 Features and meta-features

Each feature is an interval (range of positions) on one of the

reference sequences. We also define a meta-feature to be a set

of features representing a biological construct of interest. For
example, features often correspond to exons and meta-features

to genes. Features sharing the same feature identifier in the GFF
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or SAF annotation are taken to belong to the same meta-feature.

featureCounts can summarize reads at either the feature or meta-

feature levels.

3 ALGORITHM

3.1 Overlap of reads with features

featureCounts performs precise read assignment by comparing

mapping location of every base in the read or fragment with

the genomic region spanned by each feature. It takes account

of any gaps (insertions, deletions, exon–exon junctions or fu-

sions) that are found in the read. It calls a hit if any overlap

(1 bp or more) is found between the read or fragment and a

feature.
A hit is called for a meta-feature if the read or fragment over-

laps any component feature of the meta-feature.

3.2 Multiple overlaps

A multi-overlap read or fragment is one that overlaps more than

one feature, or more than one meta-feature when summarizing at

the meta-feature level. featureCounts provides users with the

option to either exclude multi-overlap reads or to count them

for each feature that is overlapped. The decision whether to

count these reads is often determined by the experiment type.

We recommend that reads or fragments overlapping more than

one gene are not counted for RNA-seq experiments because any

single fragment must originate from only one of the target genes

but the identity of the true target gene cannot be confidently

determined. On the other hand, we recommend that multi-

overlap reads or fragments are counted for most ChIP-seq

experiments because epigenetic modifications inferred from

these reads may regulate the biological functions of all their

overlapping genes (Pal et al., 2013).
Note that, when counting at the meta-feature level, reads that

overlap multiple features of the same meta-feature are always

counted exactly once for that meta-feature, provided there is

no overlap with any other meta-feature. For example, an exon-

spanning read will be counted only once for the corresponding

gene even if it overlaps with more than one exon.

3.3 Chromosome hashing

The first step of the featureCounts algorithm is to generate a hash

table for the reference sequence names. This allows the reference
sequence names found in the SAM files and GFF annotation to

be matched quickly. This is particularly useful when there is a
large number of reference sequences. After matching reads and

features by reference sequence, subsequent analysis can proceed
for each reference sequence separately.

3.4 Genome bins and feature blocks

After hashing the reference sequence names, the features in each
reference sequence are sorted by their start positions (leftmost

base positions). A two-level hierarchy is then created for each
reference sequence. First, the reference sequence is divided into

non-overlapping 128 kb bins and features are assigned to bins
according to their start positions. Within each bin, equal num-

bers of consecutive features are grouped into blocks (Fig. 1). The
number of blocks in a bin is the square root of number of fea-

tures in that bin (rounded up to the next whole number). This
ensures that the number of features in a block is nearly equal to

the number of blocks in a bin, an optimal setting for a hierarch-
ical search.
The use of a hierarchical data structure (features within blocks

within bins) is a key component of the featureCounts algorithm.
It facilitates rapid read assignment by quickly narrowing down

the genomic region that could contain features overlapping with
the query read. The query read is compared first with genomics

bins, then with feature blocks within any overlapping bins and
then with features in any overlapping blocks. Instead of using

multiple levels of bins (Kent et al., 2002; Quinlan and Hall,
2010), the algorithm uses only one level of bins in combination
with the feature blocks. Finally, the algorithm decides how to

assign the read according to which level of summarization is
being performed (feature level or meta-feature level) and whether

the read is allowed to overlap with more than one target at that
level.

4 IMPLEMENTATION

The featureCounts command in the Subread package for

Unix is written entirely in the C programming language. The
memory footprint is minimized by holding in memory only the

Fig. 1. Genomic bins and feature blocks. Each chromosome is divided into 128kb bins. Features (solid lines under the chromosome) are assigned to bins

according to their start positions and grouped into blocks (gray boxes) within each bin. Query reads are compared with genomic bins, then with blocks

(dashed arrows) and finally with features (solid arrows). The query read in the figure overlaps with two features in the first block of bin i
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feature annotation data required at each stage of the computa-
tion. The C code supports multithreading, and the user can spe-
cify the number of threads to be used. One thread is the default.

The R function featureCounts in the Rsubread package
for R is a wrapper for the same compiled C code as for the
Unix command line. The R function provides the convenience

of the R programming environment without sacrificing any of
the efficiency of the C implementation. It produces a data object

in R that can be input directly into R-based statistical analysis
software such as edgeR (Robinson et al., 2010) or limma (Law
et al., 2013) that are designed to analyze next-gen read counts.

5 PERFORMANCE ON RNA-SEQ DATA

5.1 Data and annotation

First we compare the performance of featureCounts with existing
software tools for counting RNA-seq reads at the gene level. As

an example case study, we use RNA-seq data that were gener-
ated as part of the SEQC (SEquencing Quality Control) project,
the third stage of the MicroArray Quality Control (MAQC) pro-

ject (Shi et al., 2006). These data consist of 6.8 million pairs of
101bp reads generated by sequencing a sample of Universal
Human Reference RNA on an Illumina HiSeq 2000.

The SEQC RNA-seq dataset was aligned to the human
genome GRCh37 using the Subjunc aligner included in the

Subread package (Liao and Shi, 2013; Liao et al., 2013; Shi
and Liao, 2013a). We used Subjunc for this analysis because it
explicitly identifies exon–exon junctions and outputs the map-

ping location of every base of every read including those that
span multiple exons. This allowed us to examine rigorously the
ability of the read count programs to count reads spanning mul-

tiple exons as well as reads falling within exons.
Genes and exons were defined as in the NCBI human RefSeq

annotation build 37.2. This included 25 702 genes and 225 071
exons.
Counts were summarized at the gene level. That is, exons were

defined to be features, genes were defined as meta-features and
quantification was at the meta-feature level. As this is RNA-seq
data, reads or fragments that overlapped multiple genes should

be excluded from the counts.

5.2 Comparative performance when counting reads

To demonstrate featureCounts on single-end reads, the first

evaluation uses only the first read from each read pair. Table 1
compares the performance of featureCounts to that of the
summarizeOverlaps function of the GenomicRanges package

and to the htseq-count script. featureCounts and
summarizeOverlaps yielded identical counts for every gene
(Table 1, column 2).

htseq-count counted slightly fewer reads than featureCounts
and summarizeOverlaps. We had a close look at the summariza-

tion results for each read given by htseq-count and featureCounts
and found that only a small number of reads were assigned to
different genes by the two methods (Fig. 2a). By comparing the

features regions with the regions these reads were mapped to, we
identified the reason causing this discrepancy. htseq-count takes
the right-most base position of each feature as an open position

and excludes it from read summarization, whereas featureCounts

and summarizeOverlaps take it as a closed position and includes

it in their summarizations. The GFF specification states that the

start and end positions of features are inclusive (Wellcome Trust

Sanger Institute, 2013), so the interpretation of featureCounts

and summarizeOverlaps appears to be correct. GFF is the only

annotation format supported by htseq-count. We modified the

annotation file provided to htseq-count by adding one to the

right-most position of each exon to let htseq-count include

these positions. After this modification, htseq-count yielded iden-

tical counts to featureCounts and summarizeOverlaps.

Here and all subsequent comparisons, the software tools were

tested on a HP Blade supercomputer with 64 AMD Opteron

Table 1. Performance results on the SEQC RNA-seq data

Method Number

of reads

Number of

fragments

Time

(min)

Memory

(MB)

featureCounts 4 385354 4 796 948 1.0 16

SummarizeOverlaps

(whole genome at once)

4 385354 3 942 439 12.1 3400

SummarizeOverlaps

(by chromosome)

4 385354 3 942 439 41.7 661

htseq-count 4 385207 4 769 913 22.7 101

Note: Results are given for genewise counts of either single-end reads or paired-end

fragments. featureCounts yields the same read counts as summarizeOverlaps but is

much faster and memory efficient. summarizeOverlaps counts fewer fragments be-

cause it excludes read pairs with only one end successfully mapped. htseq-count

counts slightly fewer reads or fragments than featureCounts because it interprets

GFF annotation differently and calls more ambiguously assigned fragments. The

table gives the total number of reads counted when using single-end reads and the

total number of fragments counted when using paired-end reads. Running time and

memory usage are for fragment summarization. featureCounts was set to exclude

reads or fragments overlapping multiple genes. summarizeOverlaps and htseq-count

were run in ‘union’ mode. Results are shown for countOverlaps (i) when run on the

whole genome at once and (ii) when run chromosome by chromosome.

(a)

(b)

Fig. 2. Concordance between featureCounts and htseq-count regarding

assignment of reads (a) or fragments (b) to genes. The dataset is the

same as for Table 1. The Venn diagram overlap gives the number of

reads or fragments assigned by both methods to the same gene. The

remaining counts give the number of reads or fragments assigned by

one method to some genes but not by the other method
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2.3GHz CPUs and 512 GB of memory. All programs were run

using a single CPU without multithreading. Comparisons used

software packages Subread 1.4.2, Rsubread 1.12.2,

GenomicRanges 1.12.5, IRanges 1.18.4, htseq-count 0.5.4p3 and

BEDTools 2.17.0.

5.3 Comparative performance when counting fragments

We went on to compare the same methods for counting paired-

end fragments, using the full SEQC paired-end data. Summarize

Overlaps counted far fewer fragments than featureCounts and

htseq-count (Table 1, column 3). The main reason for this dis-

crepancy is that summarizeOverlaps requires fragments to have

both end reads successfully mapped before assigning them to

genes, whereas featureCounts and htseq-count do not have such

a requirement, i.e. they can assign fragments just one end

mapped. With a read length of 101 bp, fragments with only

one end mapped can still have relatively high mapping confi-

dence. Counting such fragments seems likely to benefit down-

stream analyses. Many aligners report fragments that have only

one end mapped, including Subread, Subjunc (Liao et al., 2013),

Bowtie (Langmead et al., 2009) and TopHat (Trapnell et al.,

2009). Almost all (92%) of fragments counted by

featureCounts but not by summarizeOverlaps were assigned to

genes that also had at least 100 assigned fragments with both

ends mapped. This shows that the fragments were assigned to

genuinely expressed genes, giving confidence that the extra frag-

ments have been assigned correctly. Only 0.1% of extra frag-

ments counts by featureCounts were assigned to genes not

supported by any fragment with both ends mapped.

htseq-count also counts fewer fragments than featureCounts in

this evaluation (Fig. 2b). Running htseq-count in

‘IntersectionStrict’ or ‘IntersectionNotEmpty’ modes instead of

‘Union’ mode did not cause it count more fragments.
featureCounts can distinguish those features that overlap with

different numbers of reads from the same fragment. For ex-

ample, if two genes were found to both overlap with a fragment

but one gene was found to overlap with only one read and the

other with both reads from that fragment, featureCounts will

assign that fragment to the gene overlapping with both reads.

However, htseq-count will take this fragment as ambiguous and

will not assign it to any gene. This is the main reason why

featureCounts counted slightly more fragments than htseq-

count. featureCounts uses the size of overlap (in terms of reads)

to recover those ‘ambiguous’ fragments. For this dataset,486%

of fragments assigned by featureCounts but not by htseq-count

were assigned to genes that already had at least 100 unambigu-

ous fragments assigned by both methods. Only 0.2% of extra

fragments assigned by featureCounts were not supported by com-

monly assigned fragments. This again shows that the extra frag-

ments are being assigned to genuinely expressed genes,

suggesting that the extra fragments are likely to have been cor-

rectly assigned.
Table 1 (columns 4 and 5) shows that featureCounts was con-

siderably faster (410-folds) and more memory efficient than the

other programs. summarizeOverlaps was also run chromosome

by chromosome to save memory. That is, reads were split into

groups according to the chromosomes they were mapped to and

each group of reads was summarized separately. But it still used

20 times as much memory as featureCounts.

6 PERFORMANCE ON CHIP-SEQ DATA

6.1 Data and annotation

Now we compare the performance of featureCounts with existing

software tools for counting gDNA-seq reads at the feature level.

As an example case study, we use a ChIP-seq dataset that was

generated as part of a study of global changes in the mammary

stem cell epigenome under hormone perturbation (Pal et al.,

2013). Specifically the dataset was generated to find genomic

regions associated with the H3K27me3 epigenetic histone mark

(tri-methylation of the histone H3 lysine 27) in mouse mammary

stem cells. This dataset consists of 15 million pairs of 35 bp DNA

reads generated by an Illumina Genome Analyzer IIx. The study

analyzed the total number of fragments mapped to the broad

region of each gene, where the broad region is defined to be the

entire gene body from first to last base plus the 3kb region im-

mediately upstream from the transcription start of the gene rep-

resenting the putative promotor region (Pal et al., 2013).
The read mapping and annotation used here follows the ori-

ginal study. Reads were mapped to the mouse genome (mm9)

using the Subread aligner (Liao et al., 2013). Fragments were

included in the evaluation only if both paired reads were success-

fully mapped to the genome and if the fragment defined by the

end reads was between 50 and 500bp long. The transcription

start and end positions for each gene were obtained from the

NCBI mouse RefSeq annotation (build 37.2).

6.2 Comparative performance

We summarized paired-end fragments at the feature level, where

the features represented the broad regions of all annotated genes.

In this application, a fragment should be counted multiple times

if it overlaps multiple genes.

Table 2 compares the performance of featureCounts to that of

the countOverlaps function of the IRanges package, the htseq-

count script and the coverageBED program in the BEDTools

software suite. countOverlaps was used for this comparison in-

stead of summarizeOverlaps because it allows multi-overlap reads

to be assigned to multiple features.

featureCounts and countOverlaps yielded identical counts for

every gene, but featureCounts was considerably faster and more

memory efficient. countOverlaps was also run chromosome by

chromosome to save memory. This reduced the peak memory

usage, although it remained more than a hundred times that used

by featureCounts. Note that featureCounts, unlike countOverlaps,

can count fragments with only one end successfully mapped, but

such fragments were not included in this evaluation to ensure

that the timings and memory use for featureCounts and

countOverlaps were for identical operations.
coverageBED assigned slightly fewer fragments than

featureCounts. We found this was because coverageBED used

only the first read of each fragment to assign the whole fragment

to features. htseq-count counted 7–8% fewer fragments, presum-

ably because it does not count multi-overlap fragments. htseq-

count was run in ‘intersection-nonempty’ mode as well as in
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‘union’ mode so as to count more fragments, but this did not

make up much of the shortfall.
Columns 3 and 4 of Table 2 show that featureCounts was

about five times faster and used about 10 times less memory

than the next most efficient tool.

7 PERFORMANCE WHEN THE NUMBER OF
REFERENCE SEQUENCES IS LARGE

7.1 Simulated data

Datasets with large numbers of reference sequences are challen-

ging because the read count software must match the contig

names of features to those of reads in an efficient manner. To

examine performance under these conditions, we simulated reads

from an incompletely assembled genome with relatively large

number of scaffolds. We used an assembly of the budgerigar

genome generated in the Assemblathon 2 project (Bradnam

et al., 2013; Howard et al., 2013). For this assembly there are

16 204 annotated genes with 153 724 exons located on 2850 scaf-

folds. Eight million 100bp single-end reads were randomly ex-

tracted from the annotated exonic regions in the assembled

scaffolds. The simulated reads were entered into a SAM file.

Read mapping information was filled according to the locations

from where the reads were extracted.

7.2 Comparative performance

The simulated reads were then summarized at the gene level.

Table 3 compares featureCounts to summarizeOverlaps and

htseq-count for this dataset. As seen before on the RNA-seq

data, summarizeOverlaps yields the same counts as

featureCounts, whereas htseq-count yields slightly fewer.

featureCounts maintained its efficiency advantage over the

other methods in this evaluation, increasing its speed advantage

over summarizeOverlaps in this context.

8 THEORETICAL ANALYSIS OF ALGORITHMIC
COMPLEXITY

This section gives a theoretical analysis of the computational

time and memory storage required by featureCounts and the

other algorithms. The actual time and memory consumed by a

computer program depends on the computer hardware, operat-

ing system and other factors as well as on the mathematical ef-

ficiency of the algorithm used. However, we can derive

theoretical expressions for the rate at which time and memory

used by any specific algorithm should increase with the number

of reads, the number of features and the density of features in the

genome. The time complexity of the featureCounts algorithm can

be derived asOðf log fþ r
ffiffiffiffiffi

k1
p
Þ, where f is the number of features,

r is the number of reads and k1 is the number of features included

in a genomic bin. This means that the number of elementary

computations used by the algorithm increases linearly with the

number of reads, independently of the number of features and

somewhat faster than linearly with the number of features. The

space complexity of the featureCounts algorithm is Oðfþ b1Þ,

meaning that memory used increases linearly with the number

of features plus the number of bins b1. Time and space complex-

ities for all the algorithms are given in Table 4.
The number of reads is typically large, so rate of increase with

r is especially important. The featureCounts algorithm has the

lowest time complexity of the algorithms being compared. The

red-black tree search algorithm used by htsesq-count has higher

complexity because log f is typically larger than the square root

of the number of features per bin used by featureCounts. The

hierarchical search within bins used by featureCounts is more

efficient than the sequential search carried out by coverageBED

because most reads overlap multiple levels of bins with

coverageBED causing k2 to be typically greater than k1.

countOverlaps and summarizeOverlaps sort reads according to

their mapped locations and then use an interval tree to find fea-

tures overlapping with reads. The sort step is especially expensive

and introduces r log r terms.
The htseq-count algorithm has the best theoretical space com-

plexity, but featureCounts is not far behind because the number

of bins b1 is usually small compared with f. BEDTools has a

higher space complexity than featureCounts because it uses

Table 2. Performance results on the H3K27me3 ChIP-seq dataset

Method Number of

fragments

Time

(min)

Memory

(MB)

featureCounts 5 392 155 0.9 4

CountOverlaps

(whole genome at once)

5 392 155 24.4 7000

CountOverlaps (by chromosome) 5 392 155 36.6 783

htseq-count (union) 4 978 050 36.0 31

htseq-count (intersection-nonempty) 4 993 644 35.7 31

coverageBED 5 366 902 4.4 41

Note: featureCounts is the fastest method and uses least memory. It counts the same

number of fragments as countOverlaps but more than htseq-count or coverageBED.

Table shows the total number of fragments counted, time taken and peak memory

used. featureCounts was set to count multi-overlap fragments. Results are shown for

countOverlaps (i) when run on the whole genome at once and (ii) when run chromo-

some by chromosome. Running by chromosome conserves memory but takes

longer. Results are shown for htseq-count in two possible counting modes. For

coverageBED, the BAM input file was converted to a BED file for summarization

using bamToBed with options ‘-bedpe’ and ‘-split’.

Table 3. Performance with RNA-seq reads simulated from an annotated

assembly of the Budgerigar genome

Methods Number

of reads

Time

(mins)

Memory

(MB)

featureCounts 7 924065 0.6 15

summarizeOverlaps

(whole genome at once)

7 924065 12.6 2400

summarizeOverlaps

(by scaffold)

7 924065 53.3 262

htseq-count 7 912439 12.1 78

Note: The annotation includes 16204 genes located on 2850 scaffolds. featureCounts

is fastest and uses least memory. Table gives the total number of reads counted, time

taken and peak memory used. htseq-count was run in ‘union’ mode.
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more bins. CountOverlaps and summarizeOverlaps have higher

space complexities that depend on the number of reads as well

as on the number of features.

In practice, the running time and memory usage of a software

program are determined not just by the inherent time and space

complexities of the algorithm it adopts but also by the efficiency

of the software implementation. The practical timings show that

featureCounts achieves further efficiency gains from high per-

formance C programming and direct memory manipulation.

9 DISCUSSION

Read summarization is an important step in many next-gen

sequencing data analyses. In this study, we developed a new

read summarization program called featureCounts and compared

it with existing methods in terms of efficiency and accuracy. Our

results showed a high concordance between alternative methods

in summarization accuracy. However, there was a large differ-

ence observed in their computational cost. The featureCounts

method was found to be an order of magnitude faster on average

and far more memory efficient than other methods. The high

computational efficiency of featureCounts is due to its ultrafast

feature search algorithm and its highly efficient implementation

entirely using the C programming language.
All results presented in this article were produced using a

single thread, but featuresCounts also supports multithreaded

processing, making it particularly useful for summarizing data

generated in large sequencing studies. It is the only existing read

count method that supports multithreading.

This program provides a wide range of options to allow users

to fully control how their read data can be best summarized.

Users can choose whether they should count the reads that over-

lap with more than one feature or meta-feature. This choice is

often determined by the experiment type. Reads overlapping

with more than one gene (a meta-feature) should not be counted

in a RNA-seq experiment because such reads can only originate

from one gene, but usually they should be counted in a

gDNA-seq experiment such as a histone ChIP-seq experiment.

This program also allows users to filter out reads before summar-

ization using a number of metrics such as mapping quality scores,
fragment mappability (whether two ends from the same fragment

are both successfully mapped or not), fragment length, strand-

ness, chimerism and so on. It can automatically detect either

SAM or BAM format read input and sort reads by name if

paired reads are not in consecutive positions in the input. It

also allows users to specify whether those reads that were reported

with more than one mapping location (multi-mapping) should be

counted or not. Many of these useful features are not supported

by other programs.

The featureCounts program has been implemented in both

SourceForge Subread package (Liao and Shi, 2013) and
Bioconductor Rsubread package (Shi and Liao, 2013a). The R

function provides users with an R interface so that they can

access this program from their familiar R environment. It calls

the underlying compiled C program to perform all the read sum-

marization operations, and hence has the same speed and

memory usage as that of the SourceForge Subread package,

which is written entirely in C. The implementation of

featureCounts in R enables complete pipelines to be established

for analyzing next-gen sequencing data using Bioconductor soft-

ware programs. For example, functions included in

Bioconductor packages Rsubread, limma and edgeR can be

used to perform complete RNA-seq and histone ChIP-seq ana-

lyses, starting from read mapping, to read summarization and

finally to differential expression analyses or differential histone

modification analyses. Owing to its high efficiency and accuracy,

we believe the featureCounts program will be a useful tool in the

bioinformatics toolbox for analyzing next-gen sequencing data.
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