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ABSTRACT

Motivation: The recent shift towards high-throughput screening is

posing new challenges for the interpretation of experimental results.

Here we propose the cleverSuite approach for large-scale character-

ization of protein groups.

Description: The central part of the cleverSuite is the cleverMachine

(CM), an algorithm that performs statistics on protein sequences by

comparing their physico-chemical propensities. The second element

is called cleverClassifier and builds on top of the models generated by

the CM to allow classification of new datasets.

Results: We applied the cleverSuite to predict secondary structure

properties, solubility, chaperone requirements and RNA-binding abil-

ities. Using cross-validation and independent datasets, the cleverSuite

reproduces experimental findings with great accuracy and provides

models that can be used for future investigations.

Availability: The intuitive interface for dataset exploration, analysis

and prediction is available at http://s.tartaglialab.com/clever_suite.

Contact: gian.tartaglia@crg.es

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Due to the latest advances in technology, a large number of

sequences have been deposited into databases (Harrow et al.,

2012; Wang et al., 2012) and computational methods are being

developed for their analysis and interpretation (Bailey et al.,

2009; Dinkel et al., 2013). Some algorithms require per-case con-

figuration (Buchan et al., 2013) or lack intuitive interface (Rost,

1996), which prohibits diffusion among non-computational

scientists.
Experimental scales encoding physico-chemical properties are

useful to retrieve basic information on protein sequences

(Wilkins et al., 1999) and to predict features associated with

protein folding (Gao et al., 2010; Tartaglia and Vendruscolo,

2010), aggregation (Fernandez-Escamilla et al., 2004; Tartaglia

et al., 2008) and molecular interactions (Cirillo et al., 2013;

Muppirala et al., 2011). For instance, the Zyggregator method

predicts aggregation propensity using a combination of physico-

chemical properties including secondary structure, solvent acces-

sibility, hydrophobicity and polarity (Tartaglia and Vendruscolo,

2008). Similarly, the SVMprot algorithm exploits amino acid

properties to predict protein families annotated in Pfam (Cai

et al., 2003). Indeed, experimental scales can be employed to

investigate large-scale properties of proteomes and identify

common features (Hlevnjak et al., 2012; Zanzoni et al., 2013)

but no systematic approach has been attempted so far to provide

a general-purpose algorithm. We aim to provide researchers with

an intuitive and statistically robust method to characterize pro-

tein groups exploiting the information contained in primary

structure. Our premise is that the user should be able to make

multiple hypotheses on the training sets and build models

that others can test. As a general-purpose universal optimization

is theoretically impossible (Ho and Pepyne, 2002), our strategy is

to build a class of predictors that are specific for the individual

problems. We pay particular attention to derive unbiased models

because over-fitting of internal parameters can undermine the

general applicability of algorithms (Hawkins, 2004; Tartaglia

et al., 2004).
Our approach, the cleverSuite, provides a series of easy-to-use,

configuration-free tools with interactive graphical interface. The

central part of the suite is the cleverMachine (CM), an algorithm

to characterize protein datasets. CM does not require external

fitting parameters and returns multiple physico-chemical proper-

ties ranked by their significance. Relevant properties are merged

together to provide coherent and consistent classification, allow-

ing complex feature analysis. The second element of our suite is

the cleverClassifier (CC) that builds on top of results generated

by the CM to allow classification of protein datasets using state

of the art machine-learning approaches (Pedregosa et al., 2011).

CM and CC algorithms are freely available at http://s.tartaglia

lab.com/page/clever_suite.
We illustrate the powerfulness of our approach by making

predictions of several protein features, including structural dis-

order (Sickmeier et al., 2007), solubility (Niwa et al., 2009), chap-

erone interactions (Calloni et al., 2012; Kerner et al., 2005) and

RNA-binding abilities (Baltz et al., 2012; Castello et al., 2012).

CM and CC models that are available for consultation at: http://

s.tartaglialab.com/clever_community.*To whom correspondence should be addressed.
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2 METHODS

2.1 The cleverMachine

The algorithm evaluates relative difference in physico-chemical properties

between two provided datasets. The first dataset is considered to be posi-

tive (P) and the second negative (N). The operations of the algorithm

consist of multiple stages (Fig. 1).

2.1.1 Data generation The raw information is extracted from protein

sequences using experimental physico-chemical propensities. Our curated

database contains 80 physico-chemical propensities, derived from experi-

mental data [e.g. hydrophobicity (Black and Mould, 1991; Bull and

Breese, 1974; Fauchere and Pliska, 1983)] and statistics on computational

tools. Physico-chemical propensities are organized into groups based on

higher level properties (Fig. 2 and Supplementry Fig. S1). At present, we

use eight classes (hydrophobicity, alpha-helix, beta-sheet, disorder, burial,

aggregation, membrane and nucleic acid-binding propensities), but add-

itional descriptors are allowed (see Section 2.3). For a given propensity,

each protein sequence is scanned using a sliding window, moved one

residue at a time, starting from the N-terminus (protein profile). The

size of the sliding window is set to 7 amino acids to allow best discrim-

ination between alpha helix (hydrogen bonding in the range iþ 3! i

and iþ 5! iÞ and beta sheet (strands between 3–10 amino acids) elem-

ents, but it can be modified.

2.1.2 Signal detection For each property, we count howmany proteins

from one dataset have profiles enriched with respect to the other dataset:

coverage P,Nð Þ ¼
1

Ptot

X
p

#
1

Ntot

X
n

#ð�p � �nÞ � �

 !
ð1Þ

In Equation (1), � is the signal extracted from the protein profile, the

counter #ðx� yÞ is 1 if x4y and 0 otherwise and Ptot and Ntot are the

total number of sequences in P and N datasets. The internal parameter �

is a cut-off used in the counting (see Section 2.1.6). The coverage is

calculated for all proteins from both datasets and individual scale enrich-

ments (i.e. fractions of P and N that can be discriminated) are calculated.

For each physico-chemical propensity, the algorithm estimates the area

under the receiver operating characteristics curve (AUC). In the five cases

reported in this article, AUC and coverage P,Nð Þ show more than 0.85

correlation (Fig. 3 and Supplementary Fig. S2). As AUC is cut-off inde-

pendent, the high correlation indicates that coverage P,Nð Þ depends only

weakly on �: It is important to mention that the ROC analysis is not

defined in multiple dimensions (Li and Fine, 2008), while different phy-

sico-chemical properties can be combined into an overall coverage.

Coverage of 50% indicates that half of the dataset is differentially

enriched (expectation for a random set is 25% corresponding to 0.5 of

AUC; Fig. 3 and Supplementary Fig. S2).

2.1.3 Properties selection and combination To calculate the signifi-

cance of each physico-chemical property,P andN aremerged together and

shuffled sets matching P and N in size are extracted. The procedure is

repeated R times. For each of the randomized dataset pairs, we estimate

the coverage. Information from the random dataset discrimination is used

to rankproperties significance usingZ-scores and their associatedP-values

(Supplementary Fig. S3). Properties not meeting the criteria Z-score4Zth

Fig. 1. The cleverSuite algorithm. The CM estimates the ability of physico-chemical properties to discriminate two input datasets. The statistical analysis

gives information about individual property coverages and strength with respect to randomized sets. An exhaustive property-combination search is

performed to assess the significance of the datasets separation. The CC uses the models generated by CM to classify new datasets to either the positive or

negative set. Individual physico-chemical profiles are reported along with the discrimination statistics
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and P-value50.01 are excluded from the analysis. Using 500 random sets,

we observe that optimal values are Zth¼ 6 and R¼ 15. To check consis-

tencies among predictors of the same physico-chemical propensity, we

group the properties by higher level features and also highlight the ones

that pass the selection criteria (Fig. 2 andSupplementaryFig. S1). For each

combination of properties ranging from 1 to 5 (�107 alternatives), the

overall coverage (union of individual coverages) is calculated and the

best-performing set is selected (Fig. 4). We observe that some physico-

chemical properties are correlated.Nevertheless, since the algorithm selects

only the most discriminative combination of properties, correlation does

not represent a limitation. In fact, if two properties produce overlapping

lists of proteins, their combination creates smaller coverage compared to

scales that are more different.

2.1.4 Model generation In order to identify the best model for fur-

ther set classification, the algorithm evaluates combination of scales with

multiple machine learning methodologies. The selected classifiers include

random forests, support vector machine, nearest neighbour and adaptive

boosting algorithms (Pedregosa et al., 2011). To avoid set size bias, we

perform multiple equal size samplings from each of the datasets.

Moreover, we perform 10-fold cross-validation with each of the models

to select the best performing (highest accuracy) algorithm.

2.2 The cleverClassifier

The main goal is the set-wide assignment of query X to either P or N set

from the reference submission (Fig. 1). The prediction is carried out using

the best model evaluated on reference data. CD-HIT (Fu et al., 2012)

algorithm is employed to detect set sequence similarity of X with respect

to reference. If the similarity exceeds 10%, the value is reported to the

user. Random sets generated with the same AA composition as the ref-

erence sets are employed to estimate signal strength, which is defined as

the difference between performance of set X (i.e. fraction of cases that can

be classified) and random sets. Signal strength ranges between 0 (no en-

richment) to 0.5 (strong signal) (Supplementary Tables S1 and S2). For

each of the entries from dataset X, individual physico-chemical profiles

(Supplementary Fig. S4) are reported together with element assignment

to either P or N. Moreover, for each individual prediction we estimate

prediction strength using consensus from cross-validation models.

2.3 Additional features

(i) Custom scales: if the ‘expert mode’ option is selected in the webserver,

the user can submit up to 10 amino acid scales for CM calculations. As

CM employs 10 scales for each physico-chemical group (e.g. hydropho-

bicity) we suggest a similar approach for the choice of additional scales.

Custom scales do not need to be normalized.

(ii) Derived scale: at every run, CM produces an ad hoc scale derived

from the input sets (‘expert mode’). The scale is measured by considering

the frequency of each amino acid a in both sets P and N:

�f að Þ ¼ fP að Þ � fN að Þ ð2Þ

In Equation (2), amino acid frequencies are normalized:P
a fP að Þ ¼

P
a fN að Þ ¼ 1: The derived scale can be used in CC runs

(see (i) above).

(iii) Adaptive threshold: the optimal cut-off � corresponds to the highest

coverage with respect to shuffled sets:

� : max coverage P,Nð Þ �
1

R

X
r

coverage Pr,Nrð Þ

" #
ð3Þ

The number of shuffled sets Pr and Nr is R ¼ 15: If the ‘expert mode’

option is selected, the algorithm optimizes � for the input sets. In the

‘normal run’ mode, the cut-off is � ¼ 0:75 (Supplementary Fig. S5).

(iv) Peak detection: the coverage can be computed using (a) the average

of physico-chemical profiles or (b) regions that deviate more than one

standard deviation from the average score. Average score and standard

deviation are estimated from the distribution of profiles (considering both

positive and negative sets). The use of a threshold, previously imple-

mented for the calculation of aggregation properties (Tartaglia and

Vendruscolo, 2008), introduces a sequence-position dependency in the

calculation of profiles.

Fig. 2. Grouped property view. Example of properties grouped by

class assignment and color (each property is described by 10 predictors).

The E.coli solubility analysis is used as illustrative case: soluble proteins

(positive case) are more disordered and less hydrophobic/aggregation

prone. Low-significance properties (Z-score5Zth; P 4 0.01; Section 2)

are devoid of color. In the webserver, this view is interactive and shows in-

formation about each scale after clicking (see also Supplementary Fig. S1)

Fig. 3. Correlation between coverage and AUC. For the five cases pre-

sented in this study, AUC and coverage of individual physico-chemical

properties show a correlation r40.85. In this example, we use human

RNA-binding proteins (compared with lysate; r¼ 0.95)
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3 RESULTS

A sketch describing CM and CC workflow is presented in

Figure 1. The goal of the CM algorithm is to discriminate be-

tween two protein sets. A number of properties, including hydro-

phobicity, alpha-helical, beta-sheet, disorder, burial, aggregation,

membrane and nucleic acid-binding propensities, are employed

to build physicochemical ‘profiles’. The physico-chemical proper-

ties are combined together to identify similarities and differences

between the two sets. Once the discriminating properties are

characterized, CM generates a model, which is employed by

CC to classify new datasets. As shown in the examples below,

we tested CM and CC performances on protein features such as

secondary structure, structural disorder, solubility, chaperone re-

quirements and RNA-binding ability (Supplementary Table S1).

Unless otherwise stated, we always remove overlap between

training and test sets using CD-HIT with default cut-off set for

sequence similarity (Fu et al., 2012).

3.1 Alpha-helix versus beta-sheet proteins

In this first introductory example, we trained CM to distinguish

between alpha-helical and beta-sheet proteins. The PDB data-

base (Bernstein et al., 1977) was used to retrieve protein struc-

tures, STRIDE (Heinig and Frishman, 2004) was applied to

analyse alpha-helical and beta-sheet content and CD-HIT (Fu

et al., 2012) was employed to filter out sequences with450%

identity. After sequence redundancy removal, the alpha-helical

set consisted of 277 proteins adopting 480% of alpha-helical

conformation while the beta-sheet set was comprised of 191 pro-

teins containing460% of beta-sheet content. Sequences coding

for alpha-helical structures were used to build the positive set,

while the negative set consisted of beta-sheet proteins.

3.1.1 Performances In striking agreement with structural clas-
sification, we found that even a single physico-chemical scale of

alpha-helical propensity (Deléage and Roux, 1987) is able to

discriminate 98% of the two sets with a 99.0% accuracy and

100% precision (Table 1). Hence, CM shows ideal performances

in separating alpha-helical and beta-sheet proteins. All alpha-

helical scales (Burgess et al., 1974; Chou and Fasman, 1978;

Kanehisa and Tsong, 1980) showed consistent enrichment in

the positive set, while the beta propensity scales displayed signifi-

cant enrichment in the negative set (the signal is strong with

respect to permutated input sets with P-value50.01) (Chou

and Fasman, 1978; Deléage and Roux; Kanehisa and Tsong,

1980; Levitt, 1978; Prabhakaran, 1990).

3.1.2 Cross-validation Through a 10-fold cross-validation on

both sets, our CM showed accuracy of 97.9% (Table 1). When

compared to random sets, the signal strength was 0.5

(Supplementary Table S2). CM selected AdaBoost (Pedregosa

et al., 2011) classifier as the best performing algorithm for this

calculation.

3.1.3 Independent validations We downloaded alpha/beta

proteins from SCOP (Andreeva et al., 2008). After redundancy

removal (CD-HIT 50), the alpha-helical set consisted of 176 pro-

teins adopting 480% of alpha-helical conformation while the

beta-sheet set was comprised of 79 proteins containing 460%

of beta-sheet content. Our predictions showed accuracy of

90.4% for alpha-helical (positive set) and 93.2% for beta-sheet

(negative set) assignments (Table 1). The testing sets achieved

separation from random of 0.4 (alpha-helix) and 0.4 (beta-

sheet). On the same datasets, the RePROF (Rost, 1996) algo-

rithm yielded accuracies of 92.6% (alpha-helical proteins) and

72.1% (beta-sheet proteins; Table 1 and Supplementary

Material). As an additional test we used NetSurfP (Petersen

et al., 2009) that achieved accuracy of 96% (alpha-helical pro-

teins) and 64% (beta-sheet proteins).

Fig. 4. Scale combinations and statistics. (A) Relationship between the number of combined scales and the coverages for both positive (blue bars) and

negative (green bars) datasets. (B) Statistics for each scale combination and its individual members. In the webserver, click-through the combination titles

reveals scales contained and detailed statistics (three-scale combination is shown; the E.coli solubility analysis is used as example). This view is used to

summarize results of both CM and CC

Table 1. cleverSuite performances

cleverSuite Reference

ACCa

(%)

TPRb

(%)

TNRb

(%)

Method TPRc

(%)

TNRc

(%)

Alpha-beta 97.9 90.4 93.2 RePROF 92.6 72.0

Disorder 86.1 84.5 73.6 FoldIndex 62.9 64.7

Solubility 89.8 84.7 60.5 PROSO II 78.5 74.0

Chaperones 81.6 75.4 60.0 Limbo 100.0 22.5

mRNA 84.3 72.9 79.2 RNApred 82.5 52.8

aA 10-fold cross-validation accuracy for CM models (ACC is accuracy).
bIndependent validation performances for CC.
cPerformance comparison with algorithms reported in literature. TPR (true positive

rate) and TNR (true negative rate) are calculated on the same sets used to validate

CC. Links to full results are given in Supplementary Table S1.
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3.2 Structural disorder

It has been shown that natively unfolded proteins are implicated

in cellular regulation, signalling and assembly of macromolecular
complexes (Dunker et al., 2002). Absence of native structure has

functional implications for complex organisms (Koonin et al.,

2002). In fact, higher eukaryotes show larger amount of intrin-
sically disordered proteins with respect to prokaryotes (Tartaglia

et al., 2005). We applied our algorithm to intrinsically disordered
proteins [positive set containing 630 proteins from DisProt

(Sickmeier et al., 2007)] and structured proteins [negative set
containing 3347 proteins from SCOP (Andreeva et al., 2008)].

3.2.1 Performances CM identifies disorder as the most discrim-
inative physico-chemical property: TOP-IDB and DisProt cover

respectively 65.5% and 61.0% (Campen et al., 2008; Sickmeier
et al., 2007). We found that disordered proteins are more hydro-

philic and soluble. Indeed, the coverage is 50% for hydrophobi-
city [corresponding to 0.7 of AUC (Eisenberg et al., 1984)], 45%

for aggregation (Tartaglia and Vendruscolo, 2010) and 42% for

burial (Harpaz et al., 1994). The CM achieves optimal perform-
ances by combining the scales for disorder (Sickmeier et al.,

2007), hydrophobicity (Eisenberg et al., 1984), burial (Harpaz
et al., 1994), aggregation (Tartaglia and Vendruscolo, 2010)

and alpha-helix (Kanehisa and Tsong, 1980) (sensitivity of 0.9
and false positive rate of 0.07).

3.2.2 Cross-validation Through a 10-fold cross-validation on
both sets, our CM showed accuracy of 86.7% (Table 1). When

compared to random sets, the signal strength was 0.4
(Supplementary Table S2). The best performing classifier for

this case was Extremely Randomized Trees (Pedregosa et al.,
2011), a variant of the Random Forest ensemble classifier.

3.2.3 Independent validations As a positive set we used a data-
base of yeast prions that are enriched in structural disorder

[27 entries after sequence redundancy removal (Alberti et al.,
2009)]. The negative set was comprised of a manually curated

database of structured proteins whose folded native state has

been studied in vitro [44 entries after sequence redundancy re-
moval (Tartaglia and Vendruscolo, 2010)]. Our predictions

showed accuracy of 84.5% for prions and 73.6% for structured
proteins (Table 1). The testing sets achieved separation from

random of 0.4 (prions) and 0.2 (structured proteins). On the
same datasets, the FoldIndex (Prilusky et al., 2005) algorithm

yielded accuracies of 62.9% (prions) and 64.7% (structured pro-
teins; Table 1 and Supplementary Material). In addition, we em-

ployed NetSurfP (Petersen et al., 2009) and observed accuracies

of 88.8% (prions) and 63.7% (structured proteins).

3.3 Solubility

A number of proteins such as fragile X mental retardation pro-

tein FMRP, TAR–DNA-binding protein 43 TDP43, fused in
sarcoma FUS and prions have a strong propensity to aggregate

into amyloid fibrils (Cirillo et al., 2013). Hence, prediction of

protein solubility is fundamental to understand functional (e.g.
RNA-binding) and dysfunctional (e.g. aggregated) states. To

build a predictor of protein solubility, we took advantage of a
study in which the solubility of 70% of Escherichia coli proteins

was experimentally measured using an in vivo translation system

(Niwa et al., 2009). In this analysis, we ranked proteins by their
solubility and used top (1000 soluble proteins) and bottom (1000
insoluble proteins) elements as the positive and negative sets

(Agostini et al., 2012).

3.3.1 Performances In agreement with experimental evidence
(Niwa et al., 2009), we found that hydrophobicity (Fauchere

and Pliska, 1983; Sweet and Eisenberg, 1983) (coverage of
54–57%), aggregation (Conchillo-Solé et al., 2007) (coverage of
49%) and burial (Wertz and Scheraga, 1978) (coverage of 58%)

propensities are depleted in the positive set while disorder
(Campen et al., 2008) (coverage of 50%) and alpha-helix
(Kanehisa and Tsong, 1980) (coverage of 41%) propensities

are enriched (Fig. 2 and Supplementary Fig. S2). By selecting
the scales for disorder (Bhaskaran and Ponnuswamy, 1988;
Monné et al., 1999), burial (Argos et al., 1982; Chothia, 1975)

and alpha-helix (Burgess et al., 1974) the algorithm reported op-
timal performances associated with sensitivity of 0.96 and false
positive rate of 0.07 (Fig. 4).

3.3.2 Cross-validation Through a 10-fold cross-validation on
both sets, our CM showed accuracy of 89.7% (Table 1). When
compared to random sets, the signal strength was 0.5

(Supplementary Table S2). In this case, Random Forest classifier
(Pedregosa et al., 2011) was selected as the best performing.

3.3.3 Independent validations As positive set we used proteins

whose folding kinetics and thermodynamics have been studied
in vitro [71 non-redundant entries (Tartaglia and Vendruscolo,
2010)]. The negative set contained proteins requiring molecular

chaperones to fold into native structure [81 entries (Kerner et al.,
2005)]. Our predictions showed accuracy of 84.7% for the posi-
tive set and 60.5% for the negative. The testing achieved separ-

ation from random of 0.5 (soluble proteins) and 0.1 (insoluble
proteins). On the same datasets, PROSO II (Smialowski et al.,
2012) algorithm yielded accuracies of 78.5% (positive set) and

74% (negative set; Table 1; Supplementary Material).

3.4 Chaperone requirements

Hsp70, the major stress-induced heat shock protein, facilitates

substrate folding into native state (Calloni et al., 2012; Hartl and
Hayer-Hartl, 2002) and is able to associate with AU-rich tran-
scripts (Kishor et al., 2013; Zimmer et al., 2001). Mass spectrom-

etry experiments show that E.coli DnaK interacts with proteins
lacking strong hydrophobic core or exposing regions that are
buried in the native state. In our analysis, the positive set was

composed of proteins that require DnaK/GroEL to fold prop-
erly (109 sequences) and the negative set consisted of independ-
ently folding proteins [39 sequences (Kerner et al., 2005)].

3.4.1 Performances Our results show strong agreement with
experimental findings, with proteins in the positive set having
low hydrophobic propensity [43% coverage (Eisenberg et al.,

1984)] but high burial propensity [68% coverage (Rose et al.,
1985)], which is consistent with the observation that lack of a
hydrophobic core prevents from folding into native state

(Tartaglia et al., 2010). In agreement with experimental evidence
(Zimmer et al., 2001), we found that the positive set is enriched in
proteins binding to nucleic acids (Zimmer et al., 2001; Calloni

et al., 2012; Kishor et al., 2013). By automatically combining the
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scales for nucleic acid binding (Lewis et al., 2011), burial (Argos
et al., 1982; Rose et al., 1985), membrane (Argos et al., 1982) and

hydrophobicity (Eisenberg et al., 1984) propensities, CM
achieved a sensitivity of 0.91 and false positive rate of 0.08.

3.4.2 Cross-validation Through a 10-fold cross-validation we
find that CM has accuracy of 81.6% and separation from

random of 0.3 (Table 1 and Supplementary Table S2). The
best performance was achieved with the AdaBoost (Pedregosa

et al., 2011) classification algorithm.

3.4.3 Independent validations The positive validation set was

comprised of proteins requiring chaperones to fold (81 entries)
(Kerner et al., 2005) while the negative validation was a manually

curated dataset of independently-folding proteins [71 non-redun-
dant entries (Tartaglia and Vendruscolo, 2010)]. The independ-

ent sets achieved accuracies of 75.4% for chaperone-dependent
set and 60% for independently folding proteins. The testing sets

achieved separations from random of 0.2 (chaperone-dependent
and -independent set). To compare our performance to existing

methods, we used Limbo (Van Durme et al., 2009) to predict
DnaK-binding affinity of protein peptides. The method classified

100% of the positive set as chaperone-dependent (the accuracy
was 96% on the positive training set), and it achieved 22.5%

assignation accuracy on the independently folding dataset
(Table 1 and Supplementary Material).

3.5 RNA-binding abilities

Recent technological advances have made it possible to discover

that number of proteins have RNA-binding ability (Riley and
Steitz, 2013). We focused on RNA-interacting proteins (715

entries) detected with UV cCL and PAR-CL protocols on pro-
liferating HeLa cells and compared them with the cell lysate

[2831 entries after sequence redundancy removal (Castello
et al., 2012)].

3.5.1 Performances The single property analysis revealed a
strong and consistent RNA-binding property of the dataset:

RNA-binding scales (Castello et al., 2012; Lewis et al., 2011;
Terribilini et al., 2006) cover between 62–65%. Moreover, it

has been observed that protein disorder is an important feature
for RNA-binding proteins (Bellay et al., 2011; Cirillo et al.,

2014). In agreement with this result, we found a significant en-

richment in disorder propensities (Bhaskaran and Ponnuswamy,
1988; Campen et al., 2008). CM automatically selects the scales

for RNA binding (Castello et al., 2012; Lewis et al., 2011), dis-
order (Campen et al., 2008; Isogai et al., 1980) and aggregation

propensities (Tartaglia et al., 2008) achieving a sensitivity of 0.91
and false positive rate of 0.07 on the entire dataset.

3.5.2 Cross-validation A 10-fold cross-validation on both data-
sets yielded accuracy of 84.3% and separation from random of

0.5 (Table 1 and Supplementary Table S2). The Extremely
Randomised Tree classifier (Pedregosa et al., 2011) was selected

as the best performing algorithm for this case.

3.5.3 Independent validations The positive set contained pro-

teins identified as RNA-binding using quantitative proteomics
(Baltz et al., 2012). We removed any overlap between training

and test sets using CD-HIT (Fu et al., 2012), leaving the positive

set size to 86 entries. The negative validation contained 250 not
nucleic acid binding proteins (Shazman and Mandel-Gutfreund,
2008). Our predictions showed accuracy of 72.9% for the

mRNA-binding set and 79.2% for the negative validation. The
separation from internal random dataset was respectively 0.5 and
0.1 for the positive and negative testing sets. Using the same data

as for CC validation, the RNApred (Kumar et al., 2011)
achieved accuracy of 82.5% for the positive set and 52.8% for
the negative validation (Table 1; Supplementary Material).

4 DISCUSSION

The cleverSuite provides a novel and unique approach for both
characterization and classification of protein groups. In striking
agreement with experimental evidence, we reported accurate

predictions of protein solubility in E.coli (Niwa et al., 2009),
RNA-binding ability in H. Sapiens (Castello et al., 2012), struc-
tural disorder (Sickmeier et al., 2007) and chaperone require-

ments (Kerner et al., 2005). Our performances are comparable
to other algorithms that were built to predict specific protein
features. In agreement with previous observations, we found

that physicochemical propensities linked to structural disorder
and are relevant for RNA-binding, chaperone requirement and
solubility (Agostini et al., 2012; Calloni et al., 2012; Cirillo et al.,

2014), which very well captures the central role of natively un-
folded proteins in higher eukaryotes (Babu et al., 2011). This

observation is further supported by direct comparison of
H.sapiens and E.coli proteomes, which shows enrichment in
hydrophobicity and aggregation propensity for E.coli and struc-

tural disorder for H.sapiens (all links to results are provided in
Supplementary Table S1).
Our findings suggest that the cleverSuite is an ideal tool to

analyse the outcome of large-scale experiments. As shown in
the examples, the algorithm can be applied to very diverse
types of cases to allow a fine classification of protein features

(Table 1). Future plans include incorporation of more properties
and alternative ways to extract the signal from protein profiles.
At present, the choice of propensity scales is mainly based on

their previous use but custom scales are allowed in the webserver.
We would like to note that our approach is not restricted to
propensity scales and that any function mapping a primary struc-

ture into a profile could be interfaced with the algorithm. In next
version, we are planning to implement the projection of profiles

onto orthonormal bases, which should improve our
performances.
In the CM each physico-chemical property is described by

same number of propensity scales (eight groups containing 10
scales each; Fig. 2 and Supplementary Fig. S3), which guarantees
that there is not over-representation of a particular property. We

stress that the algorithm is built in a way that only non-corre-
lated scales are selected for the analysis. In fact, if two scales
discriminate the same set of proteins, their combination together

would result in a smaller coverage compared to non-correlated
scales. The CM can compute up to 10 millions associations of
propensities (i.e. five scales out of 80 groups) to find the optimal

combination, which is computationally expensive but ensures an
impartial and exhaustive search. For this reason, the calculations
have been parallelized to complete the analysis in short time,

even when the input sets are large. We could have used other
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algorithms instead of the exhaustive search, but our focus is the

simple and clear interpretation of scale contributions, which is

not possible through more complex approaches.
We base our approach on the assumption that the algorithm

works optimally if the system is able to select its predictors with-

out external intervention (Wolpert, 2002). Similarly to what has

been done to rationalize the determinants of protein aggregation

(Chiti et al., 2003), the cleverSuite identifies the most relevant

properties for a specific problem with the main differences being

that: (i) fitting parameters are avoided and (ii) features are se-

lected from a large pool of physico-chemical characteristics.

Notably, the method allows the user to choose the reference

set, which is strategic to circumvent the problem of the lack of

negative cases in literature (Smialowski et al., 2010).

Although other useful tools are available to analyse protein

features (Hall et al., 2009; Rao et al., 2011), we did not find any

general-purpose method to discriminate datasets using param-

eter-free combinations of physico-chemical characteristics and

we hope that our efforts will inspire future studies in the field.

In conclusion, the cleverSuites offers an easy-to-use interface,

accessible to a wide range of experimental and computational

scientists.

Submissions are by default private, however, if a user wishes to

share an analysis result or a classifier, there is an option to pub-

lish links on the ‘featured results’ page (http://s.tartaglialab.com/

clever_community, maintained by the authors).
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Conchillo-Solé,O. et al. (2007) AGGRESCAN: a server for the prediction

and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinform.,

8, 65.
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