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Abstract

Motivation: To gain fundamental insight into the development of embryos, biologists seek to

understand the fate of each and every embryonic cell. For the generation of cell tracks in embryo-

genesis, so-called tracking-by-assignment methods are flexible approaches. However, as every

two-stage approach, they suffer from irrevocable errors propagated from the first stage to the se-

cond stage, here from segmentation to tracking. It is therefore desirable to model segmentation

and tracking in a joint holistic assignment framework allowing the two stages to maximally benefit

from each other.

Results: We propose a probabilistic graphical model, which both automatically selects the best

segments from a time series of oversegmented images/volumes and links them across time. This

is realized by introducing intra-frame and inter-frame constraints between conflicting segmentation

and tracking hypotheses while at the same time allowing for cell division. We show the efficiency

of our algorithm on a challenging 3Dþt cell tracking dataset from Drosophila embryogenesis and

on a 2Dþt dataset of proliferating cells in a dense population with frequent overlaps. On the latter,

we achieve results significantly better than state-of-the-art tracking methods.

Availability and implementation: Source code and the 3Dþt Drosophila dataset along with

our manual annotations will be freely available on http://hci.iwr.uni-heidelberg.de/MIP/Research/

tracking/

Contact: fred.hamprecht@iwr.uni-heidelberg.de

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

Fueled by new microscopic techniques (e.g. Krzic et al., 2012;

Tomer et al., 2012), which allow to record in vivo multi-

dimensional images in high spatial and temporal resolution, and by

robotic high-throughput setups, biology is developing a great hunger

for robust and accurate automated cell tracking (González et al.,

2013; Kanade et al., 2011; Maška et al., 2014; Meijering et al.,

2009, 2012). As an example, one major goal in developmental

biology is the digitization of embryogenesis and its computational

analysis, where cell tracking plays an important role. Great advances

in this field have been reported most recently (Amat et al., 2014),

and one key feature in their study is that they do not strictly separate

the cell detection and segmentation stage from the cell tracking stage

(For brevity, we mostly refer to the combination of detection and

segmentation as detection only). Amat et al. (2014) instead propa-

gate the cell centroids and their approximated Gaussian shape from
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the past timesteps to the next while detecting cell divisions at the

same time. Despite handling detection and tracking separately,

tracking-by-assignment algorithms (Bise et al., 2011; Kausler et al.,

2012; Padfield et al., 2011; Schiegg et al., 2013), on the other hand,

have proven to be most flexible in terms of modeling power when

injecting prior knowledge: biological laws can be modeled as con-

straints (see Section 3.2) and prior beliefs about individual detec-

tions and assignments may be incorporated by utilizing local

classifiers trained on a small subset of the data (see Section 3.3) ra-

ther than using heuristic rules. Furthermore, tracking-by-assignment

models allow for global optimization, which will further improve

accuracy, as the assignment problems are solved in a larger temporal

context.

Nevertheless, this modeling power in tracking-by-assignment

approaches comes at the cost of propagating errors from the first

stage (segmentation) to the second (tracking) and insight from the

second stage cannot be used to lift ambiguities arising in the first

stage. In other words, the tracking result is highly dependent on the

detection/segmentation quality, and the overall achievable quality is

limited by the lack of interaction between detection and assignment

decisions.

Our work aims at solving this particular problem by introducing

a method for joint segmentation and tracking in one graphical

model. Instead of a single fixed segmentation as used in previous

tracking-by-assignment models, the detection phase generates super-

pixels/-voxels from which regions (possible cell segmentations) are

extracted as sets of the original superpixels. In particular, these

regions can be understood as a selection of possible segmentation

hypotheses. Global temporal and spatial information guides the se-

lection of those hypotheses that best fit the overall tracking. During

inference, each superpixel is assigned either a cell track identifier or

the identifier of the background (cf. Fig. 1). Put another way, our al-

gorithm simultaneously produces both a valid cell segmentation and

an assignment of each cell to its cell lineage.

Our main contribution is the formulation of a probabilistic

graphical model for joint segmentation and tracking for divisible

and almost indistinguishable cells. This undirected graphical model

incorporates prior beliefs from multiple local classifiers and guaran-

tees consistency in time and space. We also present a method to gen-

erate an oversegmentation, which respects the borders between cells

and generates an overcomplete set of superpixels even for cells in

dense populations. Furthermore, the 3Dþt Drosophila dataset we

use for evaluation and our dense manual annotations are provided

on our website. This is the first dataset of this size and kind for

which manual annotations are freely available.

1.1 Joint detection and tracking
Joint object detection and tracking is handled naturally in tracking

algorithms based on active contours (Xiong et al., 2006), space-time

segmentation (Lezama et al., 2011) or video segmentation of mul-

tiple objects (Budvytis et al., 2011; Vazquez-Reina et al., 2010).

However, these methods either cannot deal naturally with divisible

objects and heuristics must be used or they cannot cope with dense

object populations where objects may overlap. In a very recent

study, Amat et al. (2014) present a fast pipeline to simultaneously

segment and track cells by propagating Gaussian mixture models

through time, but again heuristic rules remain to detect cell div-

isions. Furthermore, optical flow has been extended to jointly deal

with segmentation and tracking (Amat et al., 2013). These authors

propose to augment an optical flow algorithm by a regularization

term based on similarities of neighboring superpixels modeled in a

Markov random field.

In tracking-by-assignment models, however, joint optimization

of segmentation and tracking is only rarely tackled. Instead, to re-

duce errors in the final results, errors are minimized in each step of

the two-stage tracking-by-assignment separately, the segmentation

step and the tracking step: for the former, specialized segmentation

approaches for the detection of overlapping objects have been de-

veloped (Arteta et al., 2013; Lou et al., 2012; Park et al., 2013).

These approaches aim to find most accurate segmentations; how-

ever, they do not incorporate any time information. To reduce errors

in the tracking step, probabilistic tracking-by-assignment methods

for dividing objects have been proposed (Bise et al., 2011; Kausler

et al., 2012), which associate a random variable with each detected

object to make allowance for false-positive detections. This idea has

recently been extended by Schiegg et al. (2013) to further correct for

undersegmentation errors by introducing conservation constraints

between timesteps to guarantee a consistent number of objects con-

tained in each detected region. In a postprocessing step, they correct

the original segmentations. Our idea goes one step further and aims

to avoid segmentation errors already in the first place by jointly

optimizing segmentation (i.e. selection of foreground superpixels)

and tracking.

Most similar to our proposed method are the models in Funke

et al. (2012), Hofmann et al. (2013) and Jug et al. (2014). Funke

et al. (2012) propose an algorithm, which segments an anisotropic

3D volume of branching neurons by generating segmentation

hypotheses in 2D slices separately and posing constraints between

overlapping segmentation hypotheses. In contrast to our model, the

authors do not need to model background for their specific use-case,

whereas in our domain, it is important to infer both whether a seg-

ment should be activated as foreground and to which segments in

the consecutive timesteps it should be linked. Moreover, they do not

model detection variables directly but introduce additional transi-

tion variables, which model appearance, disappearance and div-

isions. This is in contrast to our model, where the detection

variables allow to model a prior on the count of cells in sets of

Fig. 1. An excerpt of three consecutive timesteps of the Drosophila dataset

(2D slices out of 3D volumes). The raw data (top row) is oversegmented into

superpixels (middle row). Our graphical model then tracks the cells over time

and assigns each segment to a track (indicated by the same random color) or

background (black). Offspring cells are assigned the color of their parent cell

after mitosis (here: orange). Note that one cell may be represented by mul-

tiple superpixels. Scale bars are 10 lm

Joint cell segmentation and tracking 949

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/6/948/215669 by guest on 09 M
arch 2024

.
.
since
,
,
,
as well as 
,
,
,
-
,


regions. The authors in Hofmann et al. (2013) propose a similar

idea for joint tracking and object reconstruction from multiple cam-

eras. Both methods have in common that they solve an integer linear

program with a large set of hard constraints between superpixels

within one (time/z-slice) instance and across instances. In independ-

ent work, Jug et al. (2014) jointly segment and track bacteria in

1Dþt.

The original idea to refine a segmentation by modeling the con-

flicts between multiple overlapping segmentation hypotheses was

introduced by Brendel and Todorovic (2010) and Ion et al. (2011).

Although Brendel et al. propose algorithms to efficiently find the

best independent sets in a conflict graph, Ion et al. present a comple-

mentary approach to search for maximum cliques in the graph of

possible hypotheses (where contradicting tiles are not connected).

Their ideas were extended to the temporal domain in Brendel et al.

(2011), but they cannot deal with dividing objects. Extending this

idea to dividing cells is a much harder problem and the main contri-

bution of our article.

2 Approach

The purpose of this work is to segment and track multiple dividing

cells in a tracking-by-assignment framework. To avoid error-

propagation from the segmentation to the tracking stage, we

propose to jointly segment and track the targets based on an over-

segmentation. This process is illustrated in Figure 2: we first run an

oversegmentation algorithm on the volumes with overlapping cells

to generate multiple segmentation hypotheses. This is followed by

the construction of a graphical model for the joint segmentation and

tracking. It models competing (intra-frame) relations between the

potential cell segmentations, which overlap in space, as well as pos-

sible inter-frame hypotheses between regions of adjacent timesteps.

In this section, we specify each step of this pipeline consecutively,

starting with the oversegmentation step.

3 Methods

3.1 Competing segmentation hypotheses
To make joint segmentation and tracking computationally feasible

in tracking-by-assignment approaches, the time series of 2D/3D

images/volumes must be coarse grained into superpixels/-voxels to

reduce the problem space (stages II and III in Fig. 2). Note that

the resulting superpixels also afford the extraction of more

expressive features at the object rather than the pixel level. To this

end, first superpixels are obtained, which are as large as possible

but at the same time small enough to respect all cell boundaries.

Next, neighboring superpixels are grouped to generate different

segmentation hypotheses. Here, we choose to merge the superpixels

in a hierarchical fashion. However, the proposed model does not

rely on or exploit the resulting tree structure, so any other means of

generating complementary but conflicting segmentations could be

used.

3.1.1 Oversegmentation

In stage II, the purpose is to obtain an oversegmentation on every

image, which is sufficiently fine but as coarse as possible. That is,

we prefer single segments (superpixels) for (isolated) objects without

ambiguities, whereas multiple (smaller) segments are desired in cases

where objects overlap in space. To this end, we propose the follow-

ing oversegmentation algorithm:

1. Obtain a coarse segmentation, which only distinguishes poten-

tial foreground from definite background (high sensitivity and

low specificity).

2. Automatically select seeds fulfilling the requirements outlined

above.

3. Compute the seeded watershed on the foreground mask.

4. Merge resulting segments hierarchically to potential regions.

Here, the first step may be performed by any segmentation algo-

rithm which can be adjusted in a way that only those pixels are pre-

dicted as background where we are sufficiently certain. This step’s

output is either a hard segmentation or a probability map of the

foreground (soft segmentation). Note that typically, it is not desir-

able to track the resulting connected components directly, because

large clusters of cells may be contained in each connected compo-

nent. Hence, we continue by splitting these connected components

into multiple segments. To this end, the watershed algorithm is

applied on the probability map of the potential foreground (the fore-

ground mask is obtained by truncating probabilities below a chosen

threshold; we choose 0.5). The seeds for the watershed algorithm

Fig. 2. First, the raw data are oversegmented in all timesteps separately (stage II). Then, in stage III, segmentation hypotheses are generated by merging adjacent

segments into bigger segments (e.g. 2, 3 may be merged into 23). From this structure, a graphical model is constructed (stage IV): overlapping segmentation

hypotheses are connected by intra-frame conflicts (black: conflicting segmentation hypotheses; blue: local evidence for the number of cells in one connected

component) and inter-timestep transition hypotheses are modeled by binary random variables (yellow nodes) indicating whether the corresponding cell in t has

moved to, divided to or is not associated with the corresponding cell in tþ 1. Note that, for simplicity, only one connected component in only two timesteps is

visualized. The proposed factor graph in stage IV, in fact, models all detections and all timesteps in one holistic model at once. Also for simplicity, only a small

subset of transition variables is shown. After running inference on this factor graph, the most probable selection of active regions (actual cells) and their transi-

tions between timesteps are found as visualized by the two cells marked in yellow and blue in stage IV
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are the local maxima of the distance transform on the foreground

mask. This gives rise to regularly shaped compact segments.

3.1.2 Region merging

Finally, superpixels are grouped into regions, which form possibly

competing cell segmentations (stage III in Fig. 2). These segmentation

candidates can be generated in very different ways. For simplicity, we

choose a hierarchical region merging in a region adjacency graph

using L tree levels. Its edge weights between neighboring segments/re-

gions may be arbitrarily complex, and the regions may be merged in

an order determined by these edge weights.

Because the segmentation hypotheses are composed from the

same superpixels, natural conflicts between these regions exist and

are resolved by our graphical model (stage IV in Fig. 2) as discussed

in the next section.

3.2 Graphical model for joint segmentation and tracking
3.2.1 Overview

Based on the oversegmentation described in Section 3.1, a graphical

model [here: a factor graph (Kschischang et al., 2001)] is con-

structed whose factors collect evidence from local classifiers and, at

the same time, guarantee consistency due to linear constraints. That

is, impossible configurations are disallowed, e.g. a cell dividing into

more than two children. Building the graphical model corresponds

to stage IV in Figure 2. The construction of the factor graph and the

meaning of contained factors and random variables are described in

detail in this section. We will refer to the toy example depicted in

Figure 2 as a running example.

3.2.2 Random variables

To build the factor graph for joint segmentation and trackings, we

first introduce two types of binary random variables, detection vari-

ables and transition variables. In particular, each possible cell seg-

mentation (region) gets assigned a detection variable Xt
ia 2 f0;1g,

where i is the connected component containing the region, a is the

identifier of the region and t is the timestep. Secondly, variables

Yt
ia;jb 2 f0;1g for each possible inter-frame transition between two

regions in adjacent timesteps are added. In our illustrative example

in Figure 2, one detection variable is Xtþ1
f45gf4g, referring to region 4

in the connected component formed by regions 4 and 5 at time tþ1.

Yt
f123gf23g;f45gf4g is an exemplary inter-frame transition variable,

where the indices mean that region 23 in connected component 123

at time t may be associated with region 4 in connected component

45 at time tþ1.

3.2.3 Factors

We continue the construction of our graphical model by adding

factors. Factors may disallow specific configurations (see paragraph

constraints) and score possible configurations of their associated

variables based on estimated posterior probabilities P̂ that are

here determined by probabilistic classifiers using local evidence f t
ia.

In the following, intra-frame factors (detection and count factors)

and inter-frame factors (outgoing and incoming factors) are

described.

Obviously, all regions in each path from a leaf node to the root

node in the region merging graph (see stage III of Fig. 2) form com-

peting segmentation hypotheses and are represented by a conflict set

Ct
k each of which contains indices of such conflicting regions. For

each such conflict set Ct
k, a higher order detection factor wdet is

added in the graphical model with the energy.

EdetðX t
k;F t

kÞ

¼
�wdetlog P̂f t

ia
Xt

ia ¼ 1
� �� �

; Xt
ia ¼ 1

�wdet max
Xt

ia2X
t
k

log P̂f t
ia

Xt
ia ¼ 0

� �� �
þ cbias; Xt

ia ¼ 08Xt
ia 2 X t

k

;

8>>><
>>>:

(1)

where X t
k ¼ fXt

ijgj2Ct
k
andF t

k ¼ ff t
ijgj2Ct

k
are the detection variables

(and their corresponding features) of regions contained in conflict

set Ct
k and wdet weighs the detection factor against other factors.

A factor wðXÞ can be obtained from the given energy E(X) by the fol-

lowing transformation: wðXÞ ¼ exp �EðXÞð Þ. For the sake of brev-

ity, we will only describe the energies in the remainder of the article.

Equation (1) translates to the following: a prior probability Pf t
ia

Xt
ia ¼ 1

� �
obtained from a pre-trained local classifier (see Section

3.3 for details) with features f t
ia is transformed into an energy for the

configuration where exactly one Xt
ia is found to be a true cell. In the

second case, none of the regions in the conflict set is a true cell, a

penalty has to be paid based on the classifier’s belief of each of the

regions being false-positive detections. The model parameter cbias

can put a bias on regions to be activated rather than deactivated in

case of doubt. Note that impossible configurations, such as the selec-

tion of more than one competing region, are forbidden by constraint

C1, see Section 3.2.4. In Figure 2, the potential wdet ideally obtains a

high energy (i.e. low probability) for the single region 2, whereas re-

gion {23} has a low energy as it better represents an entire cell.

Moreover, to further leverage local evidence, a higher-order

count factor

EcountðfXt
i�gÞ ¼ �wcountlog P̂count

X
X2fXt

i�g
X ¼ k

0
@

1
A

0
@

1
A; (2)

where fXt
i�g denotes the detection variables for all regions belonging

to connected component i at time t. It injects prior beliefs for each con-

nected component i to contain k actual cells. To this end, a probabilis-

tic count classifier (see Section 3.3) is trained using features such as

total intensity or size and applied on connected components. For in-

stance, two active regions are favored for connected component {123}.

The factors above are both associated with variables from single

timesteps only. To achieve temporal associations of cells across

timesteps, the model has to be extended by inter-frame factors,

which connect detection with transition variables. Firstly, outgoing

factors with energy

EoutðXt
ia;Yt

ia!Þ ¼ EdisðXt
ia;Yt

ia!Þ þ EmoveðXt
ia;Yt

ia!Þ

þ EdivðXt
ia;Yt

ia!Þ
(3)

associate each variable Xt
ia with all possible transitions Yt

ia! to vari-

ables in the successive timestep. This factor is decomposed into three

energy terms: disappearance (penalizing the termination of a track),

cell division (allowing for cell division, based on estimated division

probabilities by a local division classifier) and cell migration (simple

association between two cells of consecutive timesteps, based on a

local transition classifier).

The second inter-frame factor, the incoming factor, assigns a

cost in case a cell appears, i.e. Xtþ1
jb is one, but all of the transition

variables in Ytþ1
!jb are zero. Details for the inter-frame factors are

provided in the Supplementary Material.

Omitted in these factors so far are impossible configurations,

such as more than one ancestor or more than two descendants for

one cell. These configurations are prohibited by adding the follow-

ing constraints.
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3.2.4 Constraints

We add linear constraints to guarantee that only feasible configurations

are part of a solution. Constraints within individual timesteps will be

referred to as intra-frame constraints, whereas inter-frame constraints

regularize the interaction of detection with transition variables. The

constraints are summarized in Table 1 and explained in the following.

Because overlapping—and hence conflicting—regions are con-

tained in the segmentation hypotheses, constraints need to restrict

the space of feasible solutions to non-contradicting solutions. For

this purpose, conflicting hypotheses are subsumed into conflict sets

Ct
k. (Red factors and their associated detection variables in Fig. 3.)

Constraint C1 in Table 1 ensures that at most one de-

tection variable is active in each conflict set. Taking conflict set C
¼ ff123g; f23g; f3gg in Figure 3 as an example, the constraint

states: Xt
f123gf3g þXt

f123gf23g þXt
f123gf123g � 1.

Those intra-frame constraints added outgoing and incoming con-

straints model inter-frame interactions and couple detection vari-

ables with transition variables. These constraints (C2 and C4 in

Table 1) ensure compatibility of detection and assignment variables:

no transition variable may be active if the corresponding detection

variable has state zero. In terms of the factor graph in Figure 3, this

means that, e.g. Yt
f123gf23g;f5gf45g � Xt

f123gf23g.

In a similar fashion, constraints C3 and C5 in Table 1 enforce com-

pliance with the tracking requirement that a cell can have at most two

descendants and one ancestor, respectively. A feasible tracking solu-

tion must fulfill all constraints C1–C5. It should be noted that only C3

needs to be adjusted appropriately if non-divisible objects are to be

tracked.

3.2.5 Inference

In our global graphical model, the total energy

EðX ;YÞ ¼
X

t

X
i

�X
k

Edet X t
k

� �
þ Ecount fXt

i�g
� �

þ
X

a

EoutðXt
ia;Yt

ia!Þ þ EinðXt
ia;Yt�1

!iaÞ
� �� (4)

subject to all constraints in Table 1;

is the sum of all factors over all possible variable configurations of

detection variables X and transition variables Y. It should be noted

that X and Y contain all random variables of all timesteps taking all

information available into account in one holistic graphical model.

The probability for a configuration X ; Y is then given by the Gibbs

distribution PðX ;YÞ / e�EðX ;YÞ and the optimal tracking corres-

ponds to its MAP solution. We solve the energy minimization prob-

lem to global optimality by solving the corresponding integer linear

program.

After inference, the optimal configuration of the factor graph

can be interpreted as a segmentation and tracking result as illus-

trated in stage IV in Figure 2. The graphical model assigns a track

identifier to each foreground superpixel and sets segment values to

zero, which are inferred to be background.

3.3 Local classifiers
The factors of the graphical model introduced in Section 3.2 are

based on the predictions of local classifiers for

1. the number of cells in a connected component: the count classi-

fier is trained based on the appearance (e.g. the size, intensity

and radius) of a connected component and predicts the number

of cells that are contained within. The predictions are then in-

jected into the count factors in Equation (2) as prior belief for

the number of cells contained in a connected component.

2. true detections: the detection classifier estimates how strongly a

region resembles a cell [cf. Equation (1)].

3. cell divisions: the division classifier rates the probability of tri-

ples of regions, ancestor and two children from consecutive

frames, to represent a division.

4. cell migration (moves): the move classifier rates every pair of re-

gions associated with a transition variable.

In our implementation, we train random forest classifiers, but

any classifier which provides (pseudo-)probabilistic predictions can

be used. These classifiers are trained on user annotated training ex-

amples. We refer the reader to the Supplementary Material for de-

tailed specifications and features used.

3.4 Implementation details
In this cell tracking application, we use the following methods and

parameters for the oversegmentation algorithm sketched in Section

3.1. To obtain a coarse foreground mask, we use the segmentation

toolkit ilastik (Sommer et al., 2011), which can segment both the

phase-contrast images from the Rat stem cells dataset and the

stained cell nuclei from the Drosophila dataset: here, prediction

maps for each timestep are computed independently using a pixel-

wise random forest trained on few training examples from the re-

spective dataset. We use 100 trees in every experiment and select the

following features at different scales: Gaussian smoothing, Gaussian

Gradient Magnitude, Difference of Gaussians, Structure Tensor

Eigenvalues and Hessian of Gaussian Eigenvalues. Then, the seeds

are determined by the local maxima of the distance transform

on the slightly smoothed foreground mask (Gaussian smoothing

with r ¼ 0:3 and r ¼ 1:0 in the case of Drosophila and Rat stem

cells, respectively) and nearby seeds are pruned by dilating with a

disc/ball of radius 2 pixels. Resulting segments are merged hierarch-

ically with edge weights determined by the ratio of the length of

their common border and the perimeter of the smaller region.

Although much more expressive weights could be used here, we find

that these simple features already perform well. Then, at every level

l 2 f0; :::;Lg of the hierarchical segmentation hypotheses (we choose

Fig. 3. Close-up on stage IV from Figure 2. In the factor graph, detection vari-

ables for possible cell segmentations are shown in black, whereas their

allowed inter-timestep transitions are modeled by random variables depicted

in yellow (most of them are omitted for clarity). Blue factors give a prior prob-

ability for each connected component how many cells it may contain. By

introducing intra-timestep conflict hard constraints (black factors), it is guar-

anteed that at most only one variable in each conflict set, e.g.

C ¼ ff123g; f23g; f3gg, may be active at a time. Outgoing and incoming fac-

tors (black squares) connect inter-frame transition with detection variables

and ensure a unique lineage of cells
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the tree depth L¼4 in the 2Dþt and L¼5 in the 3Dþt dataset),

edge weights are ordered and the neighbors with the p% highest

weights are merged iteratively. In this way, segments completely

contained within other segments are merged first, whereas regions

which only touch in few pixels are merged last. Here, we set p¼20

for l 2 f0; :::;L� 1g and p¼100 for l¼L to get the connected com-

ponents of the foreground mask as the root node of the segmenta-

tion hypotheses trees. Our model and implementation is not limited

to hierarchical segmentation hypotheses. In fact, any algorithm that

generates competing segmentation hypotheses could be used.

The graphical model described in Section 3.2 is implemented in

Cþþ using the open-source library OpenGM (Andres et al., 2012).

For tractability, the number of inter-frame hypotheses is pruned to a

reasonable number of candidates in the spatial proximity of each re-

gion: in particular, inter-frame hypotheses between frames t and tþ1

are generated by finding the two nearest neighbors in tþ1 for each re-

gion in frame t and the two nearest neighbors in t for each region in

frame tþ1. This procedure yields many inter-frame hypotheses (� 2)

in dense cell populations and only few hypotheses in the parts of the

image where cells are sparse. To create training examples for the clas-

sifiers, a small subset of the raw data is selected and sparsely anno-

tated to train a random forest (Breiman, 2001) for each classifier

suggested in Section 3.3. We choose 100 trees for each and train the

random forests to purity. The parameters of the factor graph are then

tuned to best fit a small, fully annotated subset of the data. These par-

ameters are used for the final predictions on the entire dataset to re-

port the performance measures. To do inference on our graphical

model, we use the (integer) linear programming solver CPLEX. The

globally optimal solution for the entire time sequence is found within

� 10� 70 min. We refer the reader to the Supplementary Material,

Section 5, for a more detailed runtime discussion.

4 Results and discussion

We perform comparative experiments on two datasets—a cell cul-

ture (2Dþt) and a developing Drosophila embryo (3Dþt). The for-

mer is challenging due to severe mutual overlap, whereas the latter

is difficult owing to its ambiguity in the segmentation hypotheses

due to high cell density under low contrast.

The first dataset is publicly available from Rapoport et al.

(2011) (their dataset A) and consists of a time series of 209 images

(1 376� 1 038 pixels) of about 240 000 pancreatic stem cells of a

rattus norwegicus (‘Rat stem cells’). This dataset is particularly chal-

lenging due to the cells changing their appearance (shape, size and

intensity) over time from long elongated to round cells. Moreover,

the proliferating stem cells quickly grow to a dense population caus-

ing frequent overlaps between cells. Because of the dataset’s high

temporal resolution, it is difficult to pinpoint a cell division to a spe-

cific point in time. Instead, mitosis occurs over multiple timesteps.

For this reason, we subsample the sequence in time, processing every

second image only (leaving us with 104 timesteps) and relax the

evaluation criterion for divisions (see Section 4.1). We further

resample the ground truth provided by (Rapoport et al., 2011) to

guarantee that no cell division is lost in the subsampling.

The second dataset is a developing Drosophila embryo (Schiegg

et al., 2013) (their dataset B). On average, about 800 cells are

tracked over 100 timesteps (730� 320� 30 voxels, voxel resolution

0:5 lm). Schiegg et al. (2013) evaluate their tracking method on this

dataset conditioned on a given segmentation. To evaluate the per-

formance of our joint approach of segmentation and tracking, we

extend their manual annotations such that it also covers previously

missing cells and that voxels of falsely merged cells are assigned to

individual cell identities (Both the dataset and our manual annota-

tions will be made freely available.). In this way, we can further re-

port segmentation/detection measures in addition to tracking

measures unconditioned on the segmentation result.

4.1 Evaluation measures
In contrast to the typical evaluation of tracking-by-assignment

methods, for which an evaluation conditioned on the segmentation

is sufficient to determine the efficiency of the tracking algorithm,

here, both segmentation and tracking must be compared against a

ground truth. To evaluate the segmentation quality, we use the

Jaccard index as a similarity measure between a region rres of the re-

sult and ground truth region rgt, i.e. qðrres; rgtÞ ¼ jrres\rgt j
jrres[rgt j. The best-

matching region r�resðrgtÞ ¼ arg maxrres
qðrgt; rresÞ for some ground

truth region rgt counts as a true-positive segmentation for that region

if its Jaccard index is greater than some threshold s (we set s ¼ 0:5)

[For (Amat et al., 2014), we choose s ¼ 0:0 and use a dilated cen-

troid as segment. See Supplementary Material for details.].

Unmatched ground truth/tracking result regions are considered

false-negative/false-positive detections.

We then compare the frame-to-frame tracking events (moves and

divisions) from the ground truth to those of the tracking result. We

report an unconditioned tracking result and conditioned perform-

ance measures. The former evaluates the tracking on the raw data

directly, the latter is conditioned on the true segmentation hypothe-

ses. Note that it is often not clear from the raw data, in which exact

timestep a cell division is occurring. We hence allow cell divisions to

be off from the ground truth by one timestep, i.e. a division is still

counted as a true positive if it occurs one timestep earlier or later

within the same track. Finally, based on the number of true/false

positives and false negatives, precision, recall and f-measure are

computed for detections, moves and divisions.

4.2 Results for joint segmentation and tracking
To evaluate the performance of our model for joint cell segmenta-

tion and tracking, we perform experiments on the two datasets

Table 1. Linear constraints for random variables

Constraint name Description Linear formulation ID

Intra-frame segmentation

conflicts

Conflicting (i.e. overlapping) regions may not be active

at the same time.

Pt
j2C Xt

ij�1 C1

8C 2 fCt
kgk;t

Inter-frame

Couple detection outgoing Inter-frame hypotheses may not be active when the cor-

responding detection variable is inactive.

Yt
ia;jb�Xt

ia 8j; b C2

Descendants outgoing A region may not have more than two descendants.
P

j;bYt
ia;jb�2 8i; a C3

Couple detection incoming Inter-frame hypotheses may not be active when the cor-

responding intra-frame hypotheses are inactive.

Yt
ia;jb�Xtþ1

jb 8i; a C4

Ancestors incoming A region may not have more than one ancestor.
P

i;aYt
ia;jb�1 8j; b C5
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described above. We compare with two recently proposed cell track-

ing algorithms:

1. A graphical model for cell tracking (Schiegg et al., 2013) (based

on a given segmentation), which can correct for falsely merged

cells in a post-processing step. To show that our method operates

on a reasonably fine oversegmentation and that it is not enough

to merely track the superpixels in this oversegmentation, we also

perform experiments using the method of (Schiegg et al., 2013)

but use our oversegmentation as input. To this end, we set their

parameter of maximally allowed cells in a single detection to 1. In

all three methods, we use the same count and division classifier,

to which in our method move and detection classifiers are added.

2. A cell tracking pipeline designed to track entire embryos (Amat

et al., 2014). We evaluate their algorithm on both the raw data

directly and our prediction maps as input. Note that this code

was made for 3Dþt datasets; we refer to our Supplementary

Material for further details.

In the 2Dþt dataset, we furthermore compare with the results of

Rapoport et al. (2011) for the quantitative results reported there.

4.2.1 Segmentation quality

We first investigate the quality of cell segmentations, see Table 2 for

results. Note that in both ours and Schiegg et al. (2013), cell candi-

dates may be set inactive by the graphical model. In both datasets,

our method outperforms the segmentation quality of Schiegg et al.

(2013) with an f measure of 0.97 and 0.93 compared with 0.88 and

0.87. Because our model groups superpixels into cells or deactivates

them, it is not crucial in our approach whether cell candidates (or

superpixels) are touching in the segmented image. In the method of

Schiegg et al. (2013), in contrast, the complexity of the model is

determined by the worst case cluster size, i.e. the number of

potentially merged cells. Hence, in their approach, the need for cor-

rectly segmented individual cells leads to parameter settings that in

turn make for many false negatives in the segmentation. We consider

it a strong advantage of our method to deal with competing segmen-

tation hypotheses rather than repairing a fixed segmentation.

Moreover, Rapoport et al. (2011) achieve on the Rat stem cells data

a recall of 0.95 (they do not report precision), whereas our method

obtains a recall of 0.96 under very high precision (0.99). Note

that Rapoport et al. (2011) use s ¼ 0:3 (cf. Section 4.1), whereas we

set s ¼ 0:5 as a stronger criterion. Amat et al. (2014) achieve similar

or slightly better detection accuracies on the 3Dþt dataset, because

their parametric model for cell appearance is seemingly a good fit

for the 3Dþt dataset. Our nonparametric model, in contrast, fares

better on the more irregular cell shapes in the 2Dþt data, where the

detection accuracy of (Amat et al., 2014) only increases in the course

of the movie, seemingly due to the following reasons: the cells adopt

a Gaussian shape only after a number of frames and their model is

tailored toward Gaussian shaped objects. Moreover, because of

non-homogeneous illumination, initialization with the correct num-

ber of cells seems to be imperfect. Of course, these detection errors

in this dataset are also mirrored when inspecting their tracking

quality.

4.2.2 Tracking quality

The detection/segmentation errors usually propagate to the next

stage, the tracking stage. Our model aims at avoiding such error

propagation, the performance measures for the tracking quality are

reported in Table 3. On both datasets, the proposed method is on

par with Schiegg et al. (2013) and Amat et al. (2014) in terms of

(frame-to-frame) move events. For the division events, we show

through the f measures of 0.70 (unconditioned) and 0.84 (condi-

tioned) that our method can deal with mitosis in the challenging

2Dþt dataset slightly better than Rapoport et al. (2011) (f measure

of 0.67) and improves significantly upon (Schiegg et al., 2013) (f

measures of 0.32 and 0.56, respectively), although using the same

classifier. On the other hand, the competitive method (Schiegg et al.,

2013) yields a slightly better detection rate of division events on the

3Dþt dataset. We believe that this fluctuation is due to a lack of

training data for the graphical model (only 16 divisions occur in our

training set), which is more critical in our approach because it has

more degrees of freedom. In particular, when dealing with overseg-

mented objects, a strong division classifier is crucial because the

introduced ambiguity may lead to increased confusion in division

events. If higher division accuracies are desired, the training set

needs to be expanded at the cost of more user annotations.

Furthermore, the division detection accuracy our proposed model

achieves is significantly better than that of (Amat et al., 2014). We

believe this is due to the reason that divisions are handled naturally

in tracking-by-assignment approaches (compared with heuristic

rules), and further evidence can be injected through local classifiers

trained on this specific event.

Qualitative results for the 2Dþt dataset are presented in the

Supplementary Material.

5 Conclusion

This work is motivated by the desire to overcome the propagation of

errors from a separate segmentation phase to an independent track-

ing phase in a tracking-by-assignment framework. In response, we

propose an undirected graphical model that couples decisions over

all of space and all of time. This model simultaneously selects a

Table 2. Segmentation quality after tracking (higher is better). Note

that in our method, segmentation and tracking are optimized con-

currently. The rat stem cells dataset contains a ground truth of 121

632 cells across all frames, whereas the Drosophila embryo data

consists of 65 821 true cells

Dataset Segmentation

Method Precision Recall f measure

Rat stem cells (2Dþt) (Rapoport et al., 2011)

Rapoport et al. (2011) 0.95

Schiegg et al. (2013) with their

segmentation

0.75 0.99 0.85

Schiegg et al. (2013) with our

oversegmentation

0.79 0.99 0.88

Amat et al. (2014) on raw data 0.94 0.95 0.94

Amat et al. (2014) on our

prediction maps

0.92 0.95 0.93

Ours 0.99 0.96 0.97

Drosophila embryo (3Dþt) (Schiegg et al., 2013)

Schiegg et al. (2013) with their

segmentation

0.82 0.93 0.87

Schiegg et al. (2013) with our

oversegmentation

0.77 0.95 0.85

Amat et al. (2014) on raw data 0.97 0.93 0.95

Amat et al. (2014) on our

prediction maps

0.96 0.89 0.93

Ours 0.99 0.88 0.93

Bold values represents best performance results.
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subset of competing segmentation hypotheses and combines these

into a tracking. All of these decisions are made to interact, so as to

reach the overall most likely interpretation of the data.

The benefits of this approach are borne out by experimental re-

sults that are a significant improvement over the state-of-the-art. We

present results on 2Dþt and 3Dþt datasets from biology that are

very challenging due to, first, the division of targets due to cell mi-

tosis; second, mutual overlap and poor signal-to-noise and third, the

near-indistinguishability of cells. The model is one of significant

complexity but remains solvable to global optimality in practicable

runtimes of less than an hour on the large datasets used.

There are several immediately relevant avenues for future work,

including structured learning of the classifiers or speed-ups in run-

time. The latter may be achieved by domain decomposition, which

needs to guarantee consistency in overlaps. Relaxations such as dual

decomposition (Komodakis et al., 2007) will break the graphical

model into smaller portions for each of which inference is fast while

at the same time the individual components are forced to agree on

the overlap. Also approximate solvers may be used to speed up infer-

ence. Furthermore, coupling the method of Amat et al. (2014) with

our approach might yield significant speed-ups and high accuracy in

terms of cell division detection.
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