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Abstract

Motivation: High-quality protein sequence alignments are essential for a number of downstream

applications such as template-based protein structure prediction. In addition to the similarity score

between sequence profile columns, many current profile–profile alignment tools use extra terms

that compare 1D-structural properties such as secondary structure and solvent accessibility, which

are predicted from short profile windows around each sequence position. Such scores add non-re-

dundant information by evaluating the conservation of local patterns of hydrophobicity and other

amino acid properties and thus exploiting correlations between profile columns.

Results: Here, instead of predicting and comparing known 1D properties, we follow an agnostic ap-

proach. We learn in an unsupervised fashion a set of maximally conserved patterns represented by

13-residue sequence profiles, without the need to know the cause of the conservation of these pat-

terns. We use a maximum likelihood approach to train a set of 32 such profiles that can best repre-

sent patterns conserved within pairs of remotely homologs, structurally aligned training profiles.

We include the new context score into our HMM-HMM alignment tool hhsearch and improve espe-

cially the quality of difficult alignments significantly.

Conclusion: The context similarity score improves the quality of homology models and other meth-

ods that depend on accurate pairwise alignments.

Contact: soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most methods for fold recognition and protein structure prediction

are based on the pairwise alignment of query and template sequence

profiles (Elofsson, 2002; Yan et al., 2013). Top-performing

structure prediction tools add to the profile column similarity score

a secondary structure score, which improves the sensitivity for

detecting remote homologs and the quality of the resulting

alignments (Karplus et al., 2003; Xu and Xu, 2000). In order

to maximize the information gain and therefore the improvements

in alignment quality, various finer-grained alphabets of backbone

structure states have been developed—together with tools to

predict these states (Karchin et al., 2003, 2004; Katzman et al.,

2008).

In addition to secondary structure, other 1D structural properties

are employed to improve sequence alignments in the so-called twi-

light and midnight zone, such as solvent accessibility (Liu et al.,

2007), residue coordination numbers (Karchin et al., 2004; Peng

and Xu, 2009; Wu and Zhang, 2008), backbone dihedral torsion

angles (Wu and Zhang, 2008), 1D environmental fitness scores

(Peng and Xu, 2009; Teichert et al., 2010), or a combination of

these (Faraggi et al., 2011; Ma et al., 2012; Yang et al., 2011). In all
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cases, the discretized 1D structural property is predicted from a local

sequence profile window of 13 to 15 positions, and the similarity be-

tween predicted and actual 1D properties of the aligned query and

template positions is scored.

One can get independent of structural information by comparing

1D predictions with 1D predictions. Surprisingly, this works almost

as well (Przybylski and Rost, 2004; Söding, 2005). We believe the

reason is that the conservation of a 1D structural property is tied to

the conservation of characteristic local patterns of amino acid prop-

erties, and the conservation of these patterns is scored indirectly by

comparing the predicted 1D property. Because the relationship of

patterns to properties is ‘many to few’, for example, many quite dif-

ferent patterns are all characteristic of alpha helix states, more infor-

mation might be extracted by learning and comparing conserved

patterns directly, independent of what actual structural properties

they are associated with.

Two studies learned local sequence context patterns to improve

alignments. Ohlson et al. (2006) train a self organizing map (SOM)

to cluster local profile windows. They then trained a neural network

to compute an optimum similarity score for aligned pairs of SOM

states. Improvements were small, however. Ma et al. (2012) and

(2013) reported substantial improvements in alignment quality

using a non-linear extension of conditional random fields which in-

clude as features the local sequence profile neighborhood.

Here, we devised a method to explicitly learn strongly conserved

local patterns. For training, we cut out pairs of sequence profile win-

dows from structurally aligned, homologous proteins and learn the set

of the 32 best-conserved patterns using the expectation maximization

(EM) algorithm. With these patterns, which we call ‘context states’,

we define a score that helps to discriminate homologous from non-

homologous positions by analyzing the conservation of patterns be-

tween the aligned positions. We show that the new context similarity

score improves the quality of global and local alignments of our pair-

wise alignment tools hhsearch and hhalign (Söding, 2005) and

that this in turn results in better 3D homology models.

2 Materials and Methods

2.1 General approach and notation
We built a large training set of N aligned profile window pairs of

D ¼ 2d þ 1 ¼ 13 columns, by cutting out windows from the struc-

tural alignments of the full-length protein domains from the SCOP

database (see Section 3.1). We seek to identify the maximally con-

served patterns (‘context states’) irrespective of any predefined struc-

tural or functional properties. The conserved patterns are

represented by sequence profiles of length D.

We call the N aligned training profiles Xn ¼ Xnði� d; �Þ;. . .;Xn

ðiþ d; �Þ and Yn ¼ Ynðj� d; �Þ;. . .;Ynðjþ d; �Þ; n 2 f1;. . .;Ng. Here,

Xnði; aÞ is the number of effective counts of amino acid a at position

i in one training profile and position i is aligned to position j in the

aligned profile. The effective counts are defined in the following

way: let pXn
ði; aÞ be standard sequence profile built for sequence Xn,

that is, the probability of amino acid a occurring at position i in the

MSA for Xn. The effective counts are defined as Xnði; aÞ ¼ pXn
ði; aÞ

Neff
Xn
ðiÞ and analogously Ynðj; aÞ :¼ pYn

ðj; aÞNeff
Yn
ðjÞ. Here, Neff

Xn
ðiÞ

(abbreviated ‘Neff’) is the number of effective sequences at position i

(Supplementary Material).

Each of the K conserved patterns (¼ context states) is parameter-

ized by a sequence profile pk . pk is a D� 20 matrix with pkðj; aÞ
being the occurrence probability of amino acid a 2 f1;. . .; 20g at

profile column j 2 f�d;. . .;dg. Each context state has a mixture

weight ak. We abbreviate the model parameters by h
k
¼ ðpk; akÞ and

H ¼ ðh1;. . .; hKÞ.

2.2 Generative model
We want to find parameters H that maximize the likelihood

function

LðHÞ ¼ P ðX1;Y1Þ;. . .; ðXN;YNÞjHð Þ ¼
YN
n¼1

PðXn;YnjHÞ (1)

All training samples are supposed to be independent of each other so

that the likelihood can be decomposed into a product. We use a mix-

ture model for PðXn;YnjHÞ as shown in Figure 1. The hidden vari-

able zn 2 f1;. . .;Kg indicates the index of the context state that gave

rise to ðXn;YnÞ:

YN
n¼1

PðXn;YnjHÞ ¼
YN
n¼1

XN
n¼1

PðXn;Yn; zn ¼ kjhkÞ (2)

Because our model assumes conditional independence of Xn and

Yn given the hidden context state zn, it follows that

YN
n¼1

PðXn;YnjHÞ ¼
YN
n¼1

XN
n¼1

PðXnjpkÞPðYnjpkÞPðzn ¼ kjakÞ (3)

The context state prior probabilities pðznjakÞ are simply the mixture

weights ak. We model PðXnjpkÞ, the probability to observe counts

Xnðj; aÞ of amino acid a ¼ 1;. . .; 20 in column j ¼ �d;. . .;d, using a

multinomial distribution for each column j,

PðXnjpkÞ ¼
Yd

j¼�d

CðNeff
Xn
ðjÞ þ 1ÞY20

a¼1
CðXnðj; aÞ þ 1Þ

Y20

a¼1

pkðj; aÞXnðj;aÞ

0
@

1
A

wj

; (4)

and analogously for PðYnjpkÞ. Because the effective counts Xnðj; aÞ
can assume values outside the natural numbers, we replaced factor-

ials x! with Gamma functions Cðxþ 1Þ. We assign a weight wj to

each column in Equation (4). The weights are parameterized as

wj ¼ wcenter bjjj, so that central columns contribute more than flank-

ing columns when b < 1. pk and a are discrete probability distribu-

tions which need to satisfy

XK

k¼1

ak ¼ 1;
X20

a¼1

pkðj; aÞ ¼ 1; for; k ¼ 1;. . .;K and j ¼ �d;. . .;d: (5)

Fig. 1. Generative graphical model: each of the N training profile pairs

(Xn ; Yn ) is generated by a mixture distribution with K components, the ‘con-

text states’. The hidden variables zn encode the context state that gave rise to

the n’th training sample (Xn; Yn). Each of the D columns in these count pro-

files is modeled by a multinomial distribution over the 20 amino acids with

parameters pk. The context states have mixture weights ak ðk ¼ 1;. . .;K Þ
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2.3 EM algorithm
We use the EM algorithm (Dempster et al., 1977) to maximize the

likelihood in eq (1) of generating the pairs of aligned training pro-

files. Lagrange multipliers allowed us to analytically perform the op-

timization in the M-step under the constraints in Equation (5) (see

Supplementary Material).

2.4 Scoring functions
2.4.1 Context states score

We define the context score for position i in profile X and position j

in profile Y as a log-odds score,

SctxðX i;Y jÞ ¼ log
PðX i;Y jjHÞ

PðX ijHÞPðY jjHÞ

� �
(6)

that is, the logarithm of the ratio of probability for X i and Y j to

have been generated together from the same context state (see

Equation 3), divided by the probability for X i and Y j to have been

generated independently of each other. By applying Bayes’ Theorem

twice,

PðX ijzn;HÞ ¼
PðznjX i;HÞPðX ijHÞ

PðznjHÞ
; (7)

this expression can be transformed into the following form,

SctxðX i;Y jÞ ¼ log
X
zn

PðznjX i;HÞPðznjY j;HÞ
PðznjHÞ

: (8)

Note the analogy to the log-sum-of-odds scoring function for pro-

file-profile alignment that was derived in (Söding, 2005),

SaaðpXðiÞ;pYðjÞÞ ¼ log
X20

a¼1

pXði; aÞ pYðj; aÞ
f ðaÞ : (9)

Here, the amino acid a is analogous to our context state k.

The numerators describe the probability to co-emit the same amino

acid a or the same context state zn ¼ k, respectively. f(a), the

background frequency of amino acid a, is analogous to ak.

Multiplying by 1/f(a) (or 1/ak) corrects for the fact that frequent

amino acids (context states) match up more frequently by chance

than rare ones.

Finally, the total score is a linear combination of profile column

score, context states score, and hhsearch’s standard three-state

secondary structure score (Söding, 2005):

Stotalði; jÞ ¼ ð1�wctxÞ SaaðpXðiÞ;pYðjÞÞ þwctx SctxðX i;Y jÞ
þwss Sssði; jÞ (10)

As the context states score comprises of D¼13 columns, we cor-

rect the weight wctx for the redundancy caused by the overlap of

D�1 positions between two consecutive windows (Supplemental

Material).

2.4.2 str alphabet score

Apart from secondary structure, we tested a fine-grained structural

alphabet str, which was developed to improve the alignment qual-

ity and which performed well in several CASP competitions

(Karchin et al., 2003). It is an enhanced version of the DSSP

alphabet (Kabsch and Sander, 1983), which subdivides the E state

(b–strand) into six states. We applied the improved four-layer neural

networks of (Katzman et al., 2008) and determined for all query and

template residues the probabilities for each of the 13 letters in the

str alphabet.

We denote pstr
X ði; sÞ as the probability for letter s 2 f1;. . .;13g at

position i of profile X and similarly pstr
Y ðj; sÞ for the Y. The str

structural score Sstr is defined as a log-sum-of-odds score in analogy

to Equations (8) and (9):

Sstrði; jÞ ¼
X13

s¼1

pstr
X ði; sÞ pstr

Y ðj; sÞ
pstr

bgðsÞ
; (11)

where pstr
bg is the background probability for str state s in a large set

of proteins. This str score was added to the total score with its

own optimized weight (Section 2.6).

2.5 Data sets
First, we filtered the SCOP (V1.75, Lo Conte et al., 2000) to obtain

a set with a maximum pairwise sequence identity of 20% and en-

riched each SCOP20 sequence by generating a multiple sequence

alignment with our iterative HMM-HMM searching tool hhblits

(Remmert et al., 2012) (two iterations against uniprot20 with stand-

ard parameters). Then each MSA was converted into an HMM via

hhmake (Remmert et al., 2013), ftp://toolkit.genzentrum.lmu.de/

pub/HH-suite/hhsuite-userguide.pdf) with standard parameters.

Finally, the dataset was divided into two sets by assigning the mem-

bers of every fifth fold into a smaller set Strain (1492 domains) and

the rest into a set Stest (5426 domains). Query and templates for the

training and optimization set were then sampled from Strain, whereas

test alignments are sampled from Stest. This procedure is important

to ensure that none of the sequences in the test sets are homologous

to any of the sequences in the training and optimization sets.

2.6 Parameter optimization
Because the time to compute the context score is proportional to K,

we need to keep K low in order not to significantly slow down

hhsearch. The improvements between K¼128 and K¼32 were

moderate, so we chose K¼32. As D¼13 for the window width was

found to perform well in various related applications (e.g. Biegert

and Söding, 2009) we chose the same value without further

optimization.

We needed to optimize the parameters wcenter and b describing

the weights wj in Section 2.2 and the weight wctx of the context score

in Equation (10). We could get better results by using separate par-

ameter sets for training the context states library ðwtr
center; btrÞ (for

which no weight wctx is needed) and for the alignment stage

ðwal
center; b

al;wctxÞ. Because systematic testing of wtr
center and btr re-

quires to generate a context library for each setting and furthermore

the performance then depends on the other parameters, these were

also adapted from (Biegert and Söding, 2009) (wtr
center ¼ 1:3 and

btr ¼ 0:85), so that the left and rightmost columns in a context pro-

file get a weight wj¼�6 ¼ wj¼6 ¼ 0:49. We checked libraries with

lower wtr
center ¼ 0:2 and 0.5, but this led to flatter context states and

a drop in performance.

To optimize the alignment algorithm parameters, we performed

a grid search for wal
center 2 f0:2; 0:25; 0:5; 1g and wctx 2

f0:8;0:9;1;1:1;1:2g and measured the average of alignment sensi-

tivity and precision on 1000 pairwise alignments where query and

template were sampled from Strain. We obtained best results for

wal
center ¼ 0:2 and wctx ¼ 1. Surprisingly, wal

center turned out to be

clearly smaller than 1 so that the context states become flatter dur-

ing scoring.

We optimized the parameters (wctx;w
al
center; corr) specifically for

the ROC5 homology detection benchmark by maximizing the area

under the ROC5 curve, using the same context state library as in the

alignment quality benchmarks. We used all sequences in Strain. In
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addition to wctx and wal
center, the parameter corr from hhsearch

was reoptimized. Differing from the setting for alignment quality,

we arrived at wctx ¼ 0:6; wal
center ¼ 0:4 and corr¼0.2. The optimiza-

tion of the secondary structure score weight and the str alphabet

weight were done on the same set and yielded wss¼0.25,

wstr¼0.12.

3 Results

3.1 Training
We sampled up to 10 pairs of proteins per superfamily in Strain and

accepted if their structural alignment score using tmalign (Zhang

and Skolnick, 2005) was between 0.5 and 0.85. If a window of

width D¼13 centered at a structurally aligned residue pair had at

least nine pairs within a distance of 5 Å in the structural alignment,

the window was selected as a training sample and the D columns in

the two corresponding count profiles were cut out. This procedure

returned 141 508 training profile window pairs from 2987 pairwise

alignments. Subsequently, these training pairs were filtered by calcu-

lating the mean column score Saa (Equation 9) over all D¼13 col-

umns and we rejected the trivial cases with Saa>1.5 (46 839

samples). At the beginning of training, we initialized the context

states library randomly and ran 25 EM iterations. Different initial-

izations and more iteration led to quite similar log-likelihood values

and libraries, indicating a robust training (see Supplementary

Section 9 for a plot of the library).

3.2 Alignment quality
We first assess the effect of context similarity scoring for global

alignments (Tables 1–4) since global alignments (or quasiglobal

local alignments) are used as input to homology modeling, the most

important application of our method. We then proceed to analyze

the quality of local alignments (Fig. 2).

We created two sets of pairwise alignments, a ‘hard set’ and an

‘easier set’. For the hard set, we sampled 6000 query-template pairs

from Stest by randomly selecting pairs from the same SCOP

superfamily but from a different family, with a tmalign score be-

tween 0.5 and 0.9, up to a maximum number of 25 pairs. For the eas-

ier set, we sampled 3000 query-template pairs from Stest by randomly

selecting up to 25 pairs from the same SCOP family with a tmalign

score between 0.6 and 0.95. These resulted in a mean tmalign score

of 0.61 for the hard and 0.72 for the easier set and in a mean sequence

identity of 14.3% for the hard and 16.4% for the easier set (see

Supplementary Table S2 and Supplementary Data File).

The difficulty for an HMM-HMM alignment algorithm also de-

pends strongly on the amount of evolutionary information available

in the two profile HMMs. Even structurally very similar pairs can

be difficult to align when their profile HMMs were only trained on

thin MSAs with few homologous proteins. Vice versa, even very re-

mote homologs can often be reliably aligned when their profile

HMMs were trained on thick, diverse MSAs.

To test the influence of the context similarity score on the

amount of evolutionary information available in the profile HMMs,

we created variant test sets of HMMs trained on MSAs with low di-

versity. These reflect better the diversity of MSAs encountered in

practice than the typically rich and diverse MSAs from sequences in

the SCOP, which mostly belong to large, very well studied protein

families. To this end, we reduced the number of effective sequences

(Neff) of the MSAs to a maximum value of 3 by using hhfilter

(Remmert et al., 2013) with the -neff 3 option. Neff quantifies the

diversity in an MSA (Supplemental Material). It lies between 1 for a

single sequence and 20. In summary, we have created four different

test sets: hardNeff def ; hardNeff low; easierNeff def and easierNeff low.

We measured the alignment accuracy in terms of residue-based

sensitivity and precision, where sensitivity ¼TP/(TPþFN) and

precision¼TP/(TPþFP). A true positive (TP) is a pair of residues

that is aligned correctly, that is, occurs in the reference alignment by

tmalign (Zhang and Skolnick, 2005). A false positive (FP) occurs

in the test alignment but not in the reference alignment. A false nega-

tive (FN) occurs in the reference alignment but not in the test align-

ment. All alignments were generated in global alignment mode using

hhalign with option -mact 0.

We evaluated six different score combinations on each of the

four benchmark sets (Tables 1–3): (i) the baseline version (‘profile’)

that uses only the column score Saa (Equation 9) and no secondary

structure score, (ii) the secondary structure score based on PSIPRED

predictions (Jones, 1999) for the first and 3D structure-based DSSP

assignments for the second sequence of each pair (‘ss’), (iii) the sec-

ondary structure score based only on PSIPRED predictions for both

sequences (‘SSpred’), (iv) the sum of the score in (3) and the score

based on the predictions of the 13-state str alphabet (Equation 11)

(‘ssþstr’) that was optimized for its positive impact on alignment

quality (Karchin et al., 2003), (v) the context similarity score

(Equation 8) (‘ctx’) and (vi) the sum of the score in (3) and the con-

text similarity score (‘ssþctx’).

Tables 1 and 2 show the results of the alignment benchmark for

the hard test set with default diversity and with low diversity MSAs,

respectively. The score ‘SSpred’ that makes use of only predicted sec-

ondary structure performs almost as well as the score ‘ss’ that requires

the actual secondary structure of one of the aligned proteins, for high

and low diversity MSAs. When combined with the secondary struc-

ture score based on DSSP, both the ‘str’ alphabet-based score (‘ssþstr’)

and the context similarity score (‘ssþctx’) lead to additional improve-

ments, but these are clearly more pronounced for the ‘ssþctx’ score,

which achieves the highest sensitivity and precision on high and low

diversity MSAs. All three secondary structure classes profited to a

similar degree from the additional scoring terms.

Interestingly, the improvements owing to the secondary structure

scoring and to the context score are much stronger for low-diversity

MSAs than for high-diversity ones (improvement of ‘ssþctx’ over

‘ss’ of 3.6/2.7% (sensitivity/precision) for high-diversity MSAs and

of 11.5/9.2% for low-diversity MSAs). Although the purely se-

quence-based score SSpred performs similarly to the context similar-

ity score ‘ctx’ for high-diversity MSAs, the new context score is

clearly superior for low-diversity MSAs.

On the easier dataset (Table 3), secondary structure was still bene-

ficial but the relative improvements in sensitivity/precision declined

fromþ3.6/þ2.7% for more distantly related pairs to þ1.3/þ1.1% for

the easier cases. In contrast to the hard cases, the str-based score and

the context scoring led to only minor gains. However, as for the hard

set of protein pairs, when MSA diversity was low, str and in particular

the context score again yielded significant improvements (Table 3)

over the secondary structure score alone (sens/prec gain: þ1 and

þ0.9% for str and þ4.8 andþ3.9% for ctx, respectively).

So far we have assessed global alignments. To render the com-

parison of the quality of local alignments meaningful, we have to

measure residue-wise precision and sensitivity for different settings

of sensitivity versus precision tradeoff. The alignment tools in HH-

suite allow the user to control this tradeoff with the -mact option.

Figure 2 shows the resulting receiver operator characteristic (ROC)

plot. Similarly to the global alignment case (-mact 0.0), context simi-

larity scoring improves the alignment quality and is most beneficial

when the number of effective sequences is low.
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In summary, our new context similarity score consistently im-

proved the alignment quality when combined with the standard sec-

ondary structure scoring in hhsearch. In the cases in which no

secondary structure is available, the context score (‘ctx’) also con-

sistently improved the alignment quality in comparison with the

other purely sequence-based score (‘SSpred’). The extent of improve-

ments is larger the more difficult the alignment is, that is, the more

diverged the two proteins are and the lower the diversity of the

MSAs that their profile HMMs were trained on (see Supplementary

Figure S2 for the dependence on alignment diversity). Because the

calculation of the context states score increases the runtime by a fac-

tor of about 100, one profit mostly when realigning only a set of

preselected templates for homology modeling (Section 3.4).

3.3 Comparison with the profile alignment tool PPAS
Next, we wanted to compare hhsearch/hhalign with other pro-

file–profile alignment tools. Although many profile–profile align-

ment methods have been developed by the protein structure

prediction community, most modern methods were not designed to

run independently of their protein structure prediction pipeline.

Because our goal here is to compare alignment methods and not

methods to generate sequence profiles, we could not benchmark

these tools. However, PPAS, a profile–profile alignment tool de-

veloped in the lab of Yang Zhang, could be modified to run on user

defined database profiles. It had been reported to yield equal or bet-

ter results than hhsearch on a benchmark with hard and medium

targets (Yan et al., 2013) and performed only slightly worse than

their flagship aligner MUSTER (Wu and Zhang, 2008) that includes

several 1D structure-based scores. We were unable to benchmark

MUSTER as tools for pre-computing template profiles containing

the 1D structure information are not available.

Because PPAS requires profiles in PSI-BLAST format, we con-

verted our template MSAs into PSI-BLAST format by calling

blastpgp with the -C option and a dummy database containing a

single sequence. Yet for the query we had to keep the dependency on

the PSI-BLAST output, because PPAS needs to parse it directly. For

the default Neff benchmarks (easierNeff def ; hardNeff def), we ran

PPAS with three PSI-BLAST iterations, and used the default MSAs

from Stest for hhalign. For the low Neff benchmarks

(easierNeff low; hardNeff low), we reduced the number of iterations to

two, the minimum valid value for PPAS to run. This resulted in an

average diversity of Neff¼5.9 for the easy set and 5.67 for the hard

set which is clearly above our filtered low Neff MSAs (Neff ¼2.84).

Table 2. Residue-bases alignment sensitivity and precision as

shown in Table 1) but on the hard set with low diversity MSAs

(averaged Neff 2.85)

hard set�low Neff: hardNeff low

profile sspred ss ssþstr ctx ssþctx

sens 0.305 0.350 0.364 0.372 0.393 0.406

prec 0.288 0.331 0.346 0.354 0.363 0.378

sens_h 0.318 0.367 0.377 0.384 0.412 0.420

prec_h 0.303 0.350 0.364 0.371 0.386 0.399

sens_e 0.324 0.371 0.393 0.402 0.412 0.434

prec_e 0.338 0.387 0.409 0.418 0.420 0.443

sens_c 0.267 0.303 0.315 0.322 0.340 0.350

prec_c 0.234 0.266 0.278 0.283 0.291 0.302

The differences between ‘ssþctx’ and ‘ss’ are significant according to the

paired t-test P-value (<2:2e� 16).

Table 1. Residue-bases alignment sensitivity and precision of six ver-

sions of hhalign on 6000 pairwise alignments in the hard set with

default diversity MSAs (average Neff 6.55). Best version is in bold

hard set�default Neff: hardNeff def

profile sspred ss ssþ str ctx ssþ ctx

PSIPRED � � � �
Str �
Ctx � �
DSSP � � �
Sens 0.435 0.464 0.471 0.478 0.464 0.488

Prec 0.400 0.430 0.439 0.445 0.423 0.451

sens_h 0.456 0.481 0.487 0.491 0.489 0.503

prec_h 0.424 0.452 0.461 0.467 0.449 0.473

sens_e 0.467 0.501 0.515 0.524 0.494 0.532

prec_e 0.471 0.505 0.521 0.530 0.495 0.535

sens_c 0.372 0.395 0.401 0.406 0.394 0.414

prec_c 0.321 0.342 0.348 0.352 0.337 0.357

The upper part summarizes which information is used by each versions

(PSIPRED predictions, 13-state str prediction (Katzman et al., 2008), the

new context score, and the 8-state DSSP secondary structure assignments

from the known 3D structure. The lower part gives the overall sensitivity and

precision, below subdivided into helix (h) extended beta strand (e) and coil (c)

residues, as assigned by DSSP. The differences between ‘ssþctx’ and ‘ss’ are

significant according to the paired t-test P-value (<2.2e�16).

Table 3. Residue-based alignment sensitivity and precision based

on 3000 pairwise alignments in the easier benchmark set for both

default Neff and low Neff alignments

easier set

default Neff: easierNeff def

profile sspred ss ssþstr ctx ssþctx P-value

sens 0.639 0.653 0.658 0.661 0.658 0.667 4.4e-9

prec 0.611 0.625 0.632 0.635 0.627 0.639 1.9e-5

low Neff: easierNeff def

sens 0.532 0.564 0.573 0.578 0.572 0.601 2.2e-16

prec 0.518 0.549 0.559 0.564 0.548 0.581 2.2e-16

The paired t-test P-values refer to ‘ssþctx’ versus ‘ss’.

Table 4. Residue-based sensitivity and precision of 6000 pairwise

alignments in the hard and easier benchmark set. PPAS makes use

of predicted and DSSP secondary structure

hard set

default Neff low Neff

PPAS hhalign PPAS hhalign

ss ssþctx ss ssþctx

sens 0.415 0.471 0.488 0.392 0.425 0.454

prec 0.388 0.439 0.451 0.370 0.401 0.423

easier set

sens 0.607 0.658 0.667 0.599 0.630 0.647

prec 0.585 0.632 0.639 0.581 0.610 0.623

It is compared with hhalign with secondary structure and context score.

For a comparison of hhalign with COMA (Margelevicius and Venclovas,

2010), another profile–profile alignment tool (see Supplemetary Table S1).
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Thus, we converted these query PSI-BLAST alignments into a format

readable by hhalign, ensuring that PPAS and hhalign received

the same input.

We compared PPAS with two versions of hhalign: version (3)

with secondary structure scoring based on PSIPRED and DSSP and

version (6) that additionally includes the context score. Both ver-

sions exceeded PPAS’s sensitivity and precision by 14 and 17% on

the hard set and by 7 and 10% on the easier set, respectively.

Surprisingly, hhsearch outperformed PPAS even without second-

ary structure information.

3.4 Application to homology modeling
A quality bottleneck in homology modeling is the generation of ac-

curate alignments between the query and template sequences. We

therefore tested the impact of our context similarity scoring on hom-

ology modeling by comparing the quality of 3D models generated

from alignments of different methods. To build the 3D models we

used MODELLER (Sali and Blundell, 1993), the most widely used

tool for homology modeling. The results are shown in Table 5.

As expected, the better alignments led to better homology mod-

els: The context score in hhalign improved models on the hard set

on high diversity MSAs by 10.2% (default Neff) and 9.9% (low

Neff) over PPAS models and on the easier set by 6.4% (default Neff)

and 5.9% (low Neff). Again, the more difficult the query-template

alignments, the larger were the improvements due to the context

similarity score.

3.5 Remote homology detection
When searching large databases like the PDB, out of the numerous

matches detected, often only a few are of interest. For homology

modeling, for instance, it suffices to identify 1–5 suitable homolo-

gous templates. Consequently, it is important to rank homologous

proteins on top. We therefore analyze the sensitivity for remote

homology detection using a ROC5 plot. For each query protein, one

computes the ROC5 value, which is the area under the ROC curve

up to the fifth FP. The ROC5 plot shows the fraction of queries for

which the ROC5 value is above the threshold on the x-axis. A meas-

ure that summarizes the performance on the ROC5 benchmark is

the area under the ROC5 curve (AUC).

We performed an all-against-all search with hhsearch in local

alignment mode (the standard setting for template searches in our

HHpred structure prediction server) on the proteins in Stest.

We defined members belonging to the same superfamily as TPs and

those of different folds as FPs. Pairs with both proteins within the

four- to eight-bladed b-propellers (SCOP fold IDs b:66–b:70) were

treated as unknown, and the same for Rossmann-like folds

(c:2� c:5; c:30; c:66; c:78; c:79; c:111). The ROC5 analysis in

Figure 3 shows that adding secondary structure (‘ss’) increases the

AUC from 0.583 to 0.609 (4.4%). str and ctx scoring give moderate

improvements to 0.625 and 0.641 (2.6 and 5.2% compared with

‘ss’), respectively.

4 Discussion

4.1.1 Context-specific pseudocounts

Each residue in a protein is subject to very specific selection con-

straints that mostly are caused by the requirement of folding into a

stable 3D structure. The constraints depend on the local structural

context, which can be predicted to some extent directly from each

residues’ sequence context. In Angermüller et al. (2012) and Biegert

and Söding (2009), we exploited this concept to learn a set of 4000

patterns best describing a representative set of 106 training sequence

profiles. Using these, we could enrich sequences and sequence pro-

files with context-specific pseudocounts. This approach is imple-

mented in all hh-suite programs since version 2.0.15. Hence, the

improvements observed here come on top of those already reported

for context-specific pseudocounts.

The difference between the previous approach and the one taken

here is the degree to which we demand conservation of patterns. In

Angermüller et al. (2012) and Biegert and Söding (2009), conserva-

tion needed to be just good enough to leave a clear pattern in the

training profiles built from relatively closely related sequences.

Here, in contrast, we use pairs of remotely homologous proteins and

structural alignments, which are more reliable than HMM-HMM

alignments at low sequence similarities, to find patterns that are

highly conserved across large evolutionary distances, roughly corres-

ponding to the SCOP superfamily level.

4.1.2 D structural properties

In contrast to secondary structure similarity scores and similar

scores based on the conservation of 1D structural properties, we

take an unsupervised approach of learning the conserved patterns.

Hence, we do not need to know what particular property led to the

conservation of the patterns we learn. Therefore, while we have not

succeeded in capturing all possible conserved patterns in our

32-state library (shown in Supplementary Figure S3), we have mani-

festly learned conserved patterns whose information cannot be

Table 5. Mean TMSCOREs of 3D homology models built from query-

template alignments by three profile–profile alignment methods

set Neff PPAS hhalign P-value

ss ssþctx

hard default 0.458 0.495 0.505 (þ2.0%) 2.2e-16

medium 0.444 0.468 0.488 (þ4.2%) 2.2e-16

easier default 0.610 0.644 0.649 (þ0.8%) 8.3e-7

medium 0.604 0.628 0.640 (þ1.9%) 2.2e-16

The methods are tested on the same hard and easy set of query-template

protein pairs as in the previous section. A high and a medium diversity set of

MSAs was built from the query and template sequences using three and two

iterations of PSI-BLAST, respectively. The paired t-test P-values demonstrate

a statistically significant improvement of ‘ssþctx’ over ‘ss’ quality scores.
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(‘greediness’). Global alignment corresponds to -mact 0.0
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reduced to a 3-state or even 13-state alphabet of local backbone geo-

metries. Because protein structure is known to be well conserved, we

expect many recurring local structural features such as those

described by structural alphabets to be overlapping to some degree

with our context states.

4.1.3 Failed approach 1: discriminative learning

Instead of maximizing the likelihood in Equation (1) we tried hard

to maximize the sum of similarity scores of positive training samples

minus the sum of scores for negative training samples. Yet, this ob-

jective function is no longer likelihood, precluding use of the EM al-

gorithm. Moreover, it proved to be prone to degenerate solutions

and required careful enforcement of the restraint that the probability

in the denominator in Equation (8) be equal to the average probabil-

ity of that context state over all training states.

4.1.4 Failed approach 2: transitions between context states

We tried out a more general model that allows transitions be-

tween context states k and k0. We learned the matrix of transi-

tion probabilities Pðk0jkÞ by maximum likelihood. The

score between local profiles X and Y was

log
XK

k¼1

Pðz ¼ kjXÞ
Pðz ¼ kÞ

XK

k0¼1
Pðz ¼ k0jYÞPðk0jkÞ. The alignment

quality and sensitivity did not improve, however, probably because

K¼32 states are not yet fine-grained enough to necessitate substitu-

tions between these states.

Conclusion

The new context score helps most in the difficult cases: (i) when lit-

tle evolutionary information is contained in the HMMs to be

aligned, and (ii) when proteins are remotely related. In the first case,

integrating the sparse evolutionary information vertically within an

MSA leads to only little noise suppression (i.e. the distinction of cor-

rect from incorrect alignments). Therefore, we profit most from

pulling together information horizontally along the MSAs. In the se-

cond case, it makes sense to focus on the features that are best con-

served among remote homologs, which is what our context score

was trained to do. The new score slows down hhsearch by a factor

of 100. This precludes its use in hhblits, whereas it will be unprob-

lematic for homology modeling and other applications, where a rela-

tively small set of proteins needs to be aligned with the best possible

quality.
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