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Abstract

Motivation: The multispecies coalescent model provides a formal framework for the assignment of

individual organisms to species, where the species are modeled as the branches of the sp tree.

None of the available approaches so far have simultaneously co-estimated all the relevant param-

eters in the model, without restricting the parameter space by requiring a guide tree and/or prior

assignment of individuals to clusters or species.

Results: We present DISSECT, which explores the full space of possible clusterings of individuals

and species tree topologies in a Bayesian framework. It uses an approximation to avoid the need

for reversible-jump Markov Chain Monte Carlo, in the form of a prior that is a modification of the

birth–death prior for the species tree. It incorporates a spike near zero in the density for node

heights. The model has two extra parameters: one controls the degree of approximation and the

second controls the prior distribution on the numbers of species. It is implemented as part of

BEAST and requires only a few changes from a standard *BEAST analysis. The method is eval-

uated on simulated data and demonstrated on an empirical dataset. The method is shown to be in-

sensitive to the degree of approximation, but quite sensitive to the second parameter, suggesting

that large numbers of sequences are needed to draw firm conclusions.

Availability and implementation: http://tree.bio.ed.ac.uk/software/beast/, http://www.indriid.com/

dissectinbeast.html.

Contact: bengt.oxelman@gu.se, www.indriid.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite its alleged status as a fundamental concept in biology, the

species category has lacked a definition allowing explicit testing of

particular species limits (e.g. de Queiroz, 2007). In recent years

however, several methods have been proposed for the task of de-

limiting species based on molecular data (see Fujita et al. [2012] and

Miralles and Vences [2013] for reviews). Multispecies coalescent

(Rannala and Yang, 2003) species delimitation (MSCSD) methods

make use of multi-locus sequence data to make inferences in the

presence of incomplete lineage sorting.

All current MSCSD methods are either heuristic (e.g. O’Meara,

2010), dependent on a guide tree (e.g. Satler et al., 2013; Yang and

Rannala, 2010; note however that a paper by Yang and Rannala

[2014] appeared during the revision of this article, where the re-

quirement of a user-supplied guide tree is eliminated) or are valid-

ation methods, which require prior assignment of individuals to

clusters or species. Knowles and Carstens (2007) devised a max-

imum-likelihood approach, which uses fixed gene trees as input data

and hierarchical likelihood ratio tests to compare different species

classifications. These are treated as different stochastic models with
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different sets of parameters, and the hierarchical likelihood ratio

tests require the models to be nested. Thus, for example, the classifi-

cation of putative species A, B and C into AB and C or A and BC

cannot be compared in this way, whereas ABC can be compared

with either. A Bayesian alternative which takes uncertainty in gene

tree estimation and does not require compared classifications to be

nested is to use Bayes factors, which can be achieved from accurate

marginal likelihood estimates (Baele et al., 2012; Xie et al., 2011).

Grummer et al. (2014) and Aydin et al. (2014) used this approach to

choose among species classifications, and Leaché et al. (2014b) ex-

tended the approach to be used for single-nucleotide polymorphism

data.

O’Meara (2010) devised parametric and non-parametric heuris-

tic methods to simultaneously find an optimal assignment of individ-

uals to species and their tree relationships. Yang and Rannala

(2010, 2014; Rannala and Yang, 2013) developed the idea in a

Bayesian framework, in which the gene trees are co-estimated with a

constrained species tree. In the simplest option, species are inferred

by setting a threshold on the posterior node heights of the species

tree, with small heights interpreted as evidence for collapsing a

node. This is similar to using *BEAST (Heled and Drummond,

2010) with each individual in its own ‘species’ in the XML file, and

estimating the actual species afterwards. The dimensionality of the

parameter space does not change, and there is no special prior

involved.

Here, we take a Bayesian approach, which has the advantage

that nuisance parameters can be integrated out, and also that prior

taxonomic knowledge can be taken to account. Our approach does

not require prior assignments of individuals to putative species, and

may be viewed as species tree inference while taking uncertainties in

MSCSD into account. We present Division of Individuals into

Species using Sequences and Epsilon-Collapsed Trees (DISSECT) for

species delimitation which requires no prior assignment of individ-

uals to clusters or species, but instead explores the full space of pos-

sible clusterings and tree topologies. It is along the lines of the

method of Yang and Rannala (2010) which employs a user-supplied

guide tree in which some nodes may be collapsed (i.e. all descend-

ants of these nodes assigned to one species). In the most recent ver-

sion of BP&P (Yang and Rannala, 2014), there is no need for the

user to supply a guide tree. Instead, the ‘guide tree space’ is explored

using nearest-neighbor interchange moves. The two operations of

collapsing a node, and of setting its height to zero, have the same ef-

fect on the likelihood, since the multispecies coalescent density is the

same for a single population and a population which has just split at

time 0. When a node is collapsed, the dimensionality of the param-

eter space changes, so a reversible-jump Markov Chain Monte

Carlo (rjMCMC) algorithm is needed to sample the species trees.

The basic idea behind DISSECT is to sample trees in which each tip

represents a single individual (or a cluster of individuals which defin-

itely belong in one species), but replace the usual prior density on

node heights with one which includes a spike near zero. The dimen-

sionality of the parameter space is fixed, but nodes whose heights

have a high posterior probability of being within the spike can be in-

terpreted as ‘probably collapsed’.

2 Methods

A set of individual organisms will be called a cluster. Each possible

cluster of individuals in the analysis is a candidate for constituting a

species. A set of clusters which do not overlap one another and

which together include all the individuals in the analysis will be

referred to as a clustering. In an analysis using DISSECT, some sets

of individuals may be grouped by the user as minimal clusters: these

may be merged but never split. We use ‘gene’ in a loose sense, to

mean an alignment of a sequence region which is assumed to be

homologous and unlinked to other such regions. A ‘gene copy’ is a

single row from such an alignment.

2.1 The model
In Bayesian phylogenetic analysis, a prior distribution over species

trees is needed, and for rooted trees as used here, the reconstructed

birth–death process (Gernhard, 2008) is most often used. It includes

the Yule process as a special case. The process is assumed to begin at

some time t in the past with a single species, and is conditioned on

producing the observed number of species at present. The time t is

called the ‘origin time’ or ‘origin height.’ Theorem 2.5 of Gernhard

(2008), following Thompson (1975) shows that, conditioned on t,

the speciation rate k, and the extinction rate l, the density of the un-

ordered node heights are independently and identically distributed

and are also independent of the number of tips k. This nice mathem-

atical property makes the present model tractable. Let the density of

a node height s be f (sjk, t, k, l)¼ f(sjt, k, l). In the present model,

f (s) is replaced with a mixture of f (s) and another density m(s) for s:

1�xð Þf sjt; k; lð Þ þ xm sð Þ; (1)

where x is a user-chosen weight in [0,1], and this density is used for

all the n–1 node heights in a tree with n tips. The joint density is

then

Yn�1

i¼1

1� xð Þf sijt; k; lð Þ þ xm sið Þð Þ; (2)

where s1, . . . , sn–1 are unordered node heights. This can be

expanded as

Xn

k¼1

1� xð Þk�1xn�k
X

X2CðkÞ

Y
i2X

f sijt; k; lð Þ
Y
i 62X

m ðsiÞ;

where C(k) is the set of subsets of {1, . . . , n – 1} of size k – 1. If m(s)

was the Dirac delta function @(s) (Dirac, 1958), the result would be

a distribution in which the trees with k external branches of non-

zero length (i.e. the trees with k ‘real’ tips) have total probability

mass

jCðkÞjð1� xÞk�1xn�k ¼
n� 1

k� 1

 !
1� xð Þk�1xn�k: (3)

Note that the product
Y

i2X
f sijt; k; lð Þ is the density for a recon-

structed birth–death process with k tips whose node heights are the

k – 1 non-zero si. In practice one cannot sample from such a distri-

bution without implementing rjMCMC, but it can be approximated

it using

m sð Þ ¼ e�11½0;e�ðsÞ; (4)

where e is small.

Figures 1 and 2 illustrate the densities f and (1 – x)f þxm, re-

spectively, for the case n¼3, where there are two internal node

heights. One way of sampling trees from the reconstructed birth–

death process for n¼3 is to pick a point (x, y) from a density such

as the one in Figure 1; then choose a random ordering of the tip

labels from left to right; then insert x and y between them; and fi-

nally join the nodes to form the tree. The same process is shown in

Figure 2 for the mixture density m. If the point (x, y) is in one of the
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two ‘walls’ along the axes, one node will be collapsed. If the point

(x, y) is in the ‘pillar’ near the origin, both nodes will be collapsed.

The approximation means that there is a possibility that a true speci-

ation which is more recent than e will be missed.

This is very similar to a model in which a separate reconstructed

birth–death process is assumed for each k and a rjMCMC is used to

sample from the clusterings and trees. Apart from the approxima-

tion involving e, the other difference is that the density q(tjk) for t

would normally depend on k in the reversible-jump version, whereas

in Equation (2) there is no such dependence: a single density for t for

all k is needed. It seems reasonable to assume a density for q(t)

which mixes q(tjk) using the probabilities from Expression (3). In a

normal BEAST or *BEAST analysis using the birth–death prior, an

improper uniform prior on [0,1) is assumed for the origin time t of

the tree, and the process is then conditioned on the number of spe-

cies k. The conditional density for t is shown in Theorem 3.2 of

Gernhard (2008) to be

qðtjkÞ ¼ kkkðk� lÞ2 ð1� e�ðk�lÞtÞðk�1Þe�ðk�lÞt

ðk� le�ðk�lÞtÞkþ1
: (5)

Using the probabilities from Expression (3), the prior density

for t is

qðtÞ ¼
Xn

k¼1

n� 1

k� 1

 !
1� xð Þk�1 xn�kq tjkð Þ: (6)

This can be simplified as shown in the Supplementary Information.

The model was implemented in BEAST by adding a class

BirthDeathCollapseModel, which is similar to the usual

BirthDeathModel. It contains a parameter for the origin height t as

well as for the diversification rate and relative death rate as in the

usual birth–death model. An additional MCMC operator is needed

to sample from t. This can be added using one of the existing oper-

ators in the XML. We used a ScaleOperator. No new MCMC oper-

ators were added to explore the space of species trees: the existing

NodeReHeight operator explores the posterior as modified by the

prior in Equation (2).

2.2 DISSECT workflow
The analysis can be run in BEAST (Drummond et al., 2012) version

1.8.1 and later, see Supplementary Data for instructions. BEAUTi

can be used to set up most of the analysis, as if for a *BEAST ana-

lysis. The word ‘species,’ as it appears in BEAUTi and in the BEAST

XML file, is interpreted as a minimal cluster. Two changes need to

be made to the XML file. The birth–death model must be replaced

with a birth–death-collapse model, where e can be set, and an oper-

ator must be added for the origin height. The parameter x can either

be given a fixed value, or estimated by adding a hyperprior and an

operator. The trees sampled from the posterior can be analyzed with

a tool called SpeciesDelimitationAnalyser. It is similar to

TreeAnnotator, but instead of summarizing the clade frequencies

from the BEAST output, it summarizes the posterior frequencies of

clusterings, and produces a table X of clusterings Z1, Z2, . . . , Zz

with corresponding posterior probabilities clusterings p1, p2, . . . , pz

which sum to 1. The clusterings are sorted in order of decreasing

posterior probability. An R script for producing a similarity matrix

(see Section 3.4) and detailed instructions on how to use

SpeciesDelimitationAnalyser are provided in the Supplementary

Information.

2.3 Advice on choosing parameters and priors
The parameter x can be chosen to reflect prior knowledge about the

likely number of species. As a consequence of the structure of the

model, even when x is fixed, the prior on the number of species k is

somewhat diffuse: it is not possible to insist on exactly seven species

for example. In the case of fixed x, the number of trees with k ‘real’

tips in the prior has the distribution of 1 þ X, where X is a random

variable having the binomial distribution with size parameter n�1

and probability parameter 1�x. Its mean is thus 1þ (n�1)(1�x).

If the individuals have been assigned in previous work to k0 species,

then x¼ (n�k0)/(n�1) seems a reasonable choice. If the value of x
is estimated, and a beta prior is used, the prior distribution on k – 1

is a beta-binomial distribution, which can be explored using the R

package VGAM (Yee [2010] see also Supplementary Information).

If a flat prior on the number of species is desired, a Beta distribution

with parameters (1,1) will ensure this. If x is fixed at zero, the value

of e becomes irrelevant, and the model becomes equivalent to the

birth–death model as used in *BEAST, except that the origin height

is estimated instead of being integrated out analytically.

The parameter e should be set to a small value such as 1e–4 or

1e–5. The value is a compromise between exactly matching a par-

ticular model and the practicalities of computation. Extremely small

values may lead to poor mixing, although we have only observed a

substantial effect for e below 1e–6. If e is too large it will not be pos-

sible to distinguish very recent divergences. For most analyses, there

will not be enough data to distinguish speciations with node heights

below 1e–4, since the expected number of mutations separating the

species is only 1 per 5000 sites, so the choice of e will not be at all

Fig. 1. Sampling trees from the usual birth–death density

Fig. 2. Sampling trees from the mixture density
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critical. Note that these values are based on the premise that the mu-

tation rate is set to 1, or that one is set to 1, and the others are esti-

mated relative to this.

When the number of individuals per species is small, it becomes

difficult to estimate the population size parameters in each branch in

the multispecies coalescent model. In such a case, care must be taken

to use a sensible prior on these parameters, especially the

‘species.popMean’ parameter. We recommend that the prior should

be proper, and diffuse enough to accommodate extreme but possible

values, but not absurdly diffuse. This is good advice anyway when

using *BEAST, but it becomes more critical when using DISSECT,

since it will typically be harder to ensure that the number of individ-

uals per species is not small.

3 Evaluation

3.1 Simulated scenarios and parameter settings
Two sets of simulations were run. The first set evaluates the perform-

ance of DISSECT as the number of genes and the amount of

incomplete lineage sorting varies, and assesses the sensitivity of the

method to choices of e and x. The second set focuses on the case of

one true species. We use Ne to mean the effective number of (diploid)

individuals in a population. If Ne is constant, this means that the ex-

pected time for two gene copies to coalesce is 2Ne generations. We de-

note the mutation rate per site per generation by l. Node heights and

e are in the same units as the product lNe. Note that the topology

and node heights of the gene trees only depend on the product lNe,

so a scenario with l¼1e–8 and Ne¼50 000 is equivalent to one with

l¼1e–9 and Ne¼500 000 and so on. There are two sources of

‘noise’ in the data: one comes from coalescences which are deeper

than species tree node height and the other from the randomness of

mutations. For a node height of 0.001 and a gene length of 500, the

expected number of substitutions separating two species is 1, so

around 37% of pairs of gene copies from different species would be

identical if they coalesced at the species node height.

The first set (SIM-5x5) of simulations all use 25 individuals, 5 as-

signed to each of 5 species, with one gene copy per individual. The

species tree has a comb topology with node heights at 0.001, 0.002,

0.004, and 0.008. These heights are chosen to roughly approximate

those in the empirical dataset (see below). The value of 2Ne was

69 000 at the tips and at the rootward ends of branches, and

138 600 at the root and tipwards ends of internal branches, varying

linearly along the branches. The length of the genes was set to 500

sites, and the number of genes G was set to 3, 9, or 27. The muta-

tion rate l was set to 2e–9, 1e–8, or 5e–8, representing small, mod-

erate, and large amounts of incomplete lineage sorting. In coalescent

units 2lNe, the height of the most recent speciation is 5, 1, and 0.2,

respectively. The root of the species tree is at 0.008/T generations,

and is therefore 4 000 000 generations when l¼2e–9, 800 000 gen-

erations when l¼1e–8 and 160 000 generations when l¼5e–8. To

get some idea of the amount of signal and noise due deep to coales-

cences in the data, consider the G¼9 case, where there are 4500

sites. For l¼2e–9, the number of variable sites is about 100. In the

case l¼1e–8, the number of variables site is around 200, and in the

case l¼5e–8, it is around 500. The increase in variable sites as l in-

creases is due to deeper coalescences.

We explored the accuracy of the method with respect to changes

in e by using a beta prior for x with shape parameters 8 and 2, and

setting e to 0.0001¼1e–4, 3e–5, and 1e–5. We also explored the be-

havior with respect to different priors for x by fixing e to 1e–4, and

setting x to 11/12, 5/6, and 17/24, corresponding to prior means for

k of 3, 5, and 8. In addition, two sets of runs performed with a Beta

hyperprior on x with parameters (8,2) and (1,1), respectively. The

former distribution has a peak at 4, and the latter means that the

probability is uniformly distributed.

The second set SIM-1 of simulations all use l¼1e–8 and

Ne¼100 000, meaning that the simulated genealogies span one co-

alescent unit. In this case a single species was simulated, so the gene

trees are all the result of a coalescence process only. The product

lNe scales the number of substitutions, and thus affects the accuracy

with which genes trees can be estimated, but does not change the

underlying ‘shape’ of the problem. The value of e was 1e–4. A beta

prior with shape parameters 8 and 2 was used for x, which means

that the prior was biased toward more than one species. We used

n¼4, 8, and 16 individuals and G was set to 3, 9, and 27 to exam-

ine how these variables affect the rate of false splits.

3.2 Implementation of simulations
The simulated data was generated and analyzed using R (R

Development Core Team, 2011) and the R packages APE (Paradis

et al., 2004) and phangorn (Schliep, 2011). Gene trees were simu-

lated according to the multispecies coalescent model for each scen-

ario and parameter choice, for 50 replicates. Sequence alignments

with 500 sites were generated for these gene trees using Seq-Gen

(Rambaut and Grassly, 1997) called with command

seqgen.exe -mHKY -t3.0 -f0.3,0.2,0.2,0.3

This uses a strict clock and the HKY substitution model, and all

genes have the same mutation rate. There is no site rate heterogen-

eity. These sequences were then incorporated into BEAST XML

files, and DISSECT was run for 50 million generations with the

first 25 million discarded as burn-in. The priors for species.

popMean, meanGrowthRate and the relative clock rates were

all lognormals, with means and standard deviations in log space

equal to �7 and 2, 4.6 and 2 and 0 and 1, respectively. The prior

for relativeDeathRate was uniform in [0,1]. Species

DelimitationAnalyser was run after DISSECT with the first 25 mil-

lion discarded as burn-in.

3.3 Empirical data
Species delimitation in the pocket gopher genus Thomomys sub-

genus Megascapheus has been controversial, with a large number of

species described by early taxonomists. Most of these have been

reduced to subspecific rank by twentieth century taxonomists

inspired by the biological species concept (e.g. Wilson and Reeder,

2005). According to opinion of these recent authors, the number of

species in the dataset of Belfiore et al. (2008), also used by Heled

and Drummond (2010), vary between 6 and 8, depending on how

the species T. bottae, T. umbrinus and T. townsendii are delimited.

We explored the dataset, which consists of 26 individuals which

were defined as ‘species’ and 7 non-coding nuclear sequence regions

(Belfiore et al., 2008), by varying e from 1e–7 to 1e–3, and by setting

x to 0.12 or 0.68 (corresponding to subspecies elevated to species

rank, and eight species, as classified in Belfiore at al. [2008], respect-

ively). We also used a Beta hyperprior with parameters 4 and 2

(Fig. 3). Each combination of e and x was run for 200 million gener-

ations, saving parameter values and species trees every 5000th

generation. SpeciesDelimationAnalyser was run with s equal to e.
The second dataset is an extension of the data used by Aydin

et al. (2014) for a group of species in the flowering plant genus

Silene L. They used marginal likelihood estimates as well as the soft-

ware BP&P (Yang and Rannala, 2010) to compare species
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delimitations in section Cryptoneurae Aydin and Oxelman, and

concluded that there was strong support for the recognition of the

recently described species S. ertekinii Aydin and Oxelman, and most

probably four species in total. Here, we use data from 20 individuals

and sequence data from the same six loci as Aydin et al. (2014) to

compare results from a Beta(4,2) prior on x, to those from a

Beta(1,1) prior, which means that all values of x have uniform prior

probability.

3.4 Evaluation metrics
The number of possible clusterings of n individuals (known as the

Bell number Bn) increases rapidly with n. For example B2¼2,

B3¼5, B4¼15, B5¼52, B10¼115 975 and B25�4.6e 18. (See

O’Meara, 2010, for more details.) The accuracy of the estimated

number of species is not a good way to judge the method, since the

number may be correct despite false splits and false merges which

cancel out, or despite major mis-assignments, or incorrect due to a

single individual being incorrectly merged or separated from a clus-

ter. There are approximately 2.4e 15 ways in which 25 individuals

can be grouped into five clusters. The situation is similar to that of

inferring phylogenies, where we typically do not expect every clade

to be correctly inferred if the number of species is large. In order to

assess the accuracy of DISSECT, we therefore want a metric analo-

gous to tree metrics such as the Robinson–Foulds distance.

Rand index. We chose the Rand index (Rand, 1971), which

measures the similarity R(X,Y) between two clusterings X and Y of

the same set (e.g. the set of individuals). It is convenient to use for

accuracy evaluations. The Rand index is always between 0 and 1,

and is 1 when the match is perfect. We also define R X;Yð Þ ¼ 1� R

X;Yð Þ which is a metric in the mathematical sense, and which we

will refer to as the Rand metric. Firstly, in order to evaluate the pos-

terior distribution as a whole, we weight the Rand metric between

each clustering Zm in the table X produced by DISSECT and the true

clustering Z* by its posterior probability pm, and thus produce an

overall measure of the distance from the posterior distribution to Z*:

DðX;Z�Þ ¼
Xz

m¼1

pmR Zm;Z
�ð Þ:

This is our main tool for evaluating DISSECT on simulated data.

In the Supplementary Information, we present several other ways to

explore the results.

3.5 Results
Results for the first set SIM-5x5 are shown in Figure 4. In general,

increasing the number of genes from 3 to 9 increases accuracy, and

it is almost perfect for nine genes in the easy cases, where the short-

est branches of the species trees are five coalescent units (c in Fig. 4).

However, with 27 genes, accuracy goes down at least for the easy

case. Checking the trace files and effective sample sizes (ESSs) re-

vealed poor convergence of these runs. The effect of varying the

prior for x shows no obvious effect on accuracy, except possibly a

small increase in the posterior probability with increasing k (see

Supplementary Data).

Results for the second set SIM-1 are shown in Figure 5. The

point estimates were always correct, except in one replicate with

nine genes, medium amount of lineage sorting, and eight individuals.

There were no false splits with high posterior probabilities. The pos-

terior probability of the correct clustering increases with G, but

shows no clear effect with varying number of individuals I.

However, when running the same analyses with x � Beta(N–1,1),

meaning that the prior probability of one species is 0.5, accuracy

increases with the number of individuals (Supplementary Data).

Fig. 3. Prior distribution for the number of clusters when x is 0.12 (black cir-

cles), 0.68 (black squares), and has a Beta distribution with parameters 4 and

2 (open circles)

Fig. 4. The boxplots show the values of the error metric over 50 replicates as

the number of genes (G¼ 3, 9, or 27), the amount of lineage sorting (shortest

branches of species tree a¼0.2, b¼ 1.0, c¼ 5.0 coalescent units) and prior on

x (B82: Beta � (8,2) hyperprior, k¼ 3, 5 or 8) vary. Epsilon is 0.0001, and

50 000 000 MCMC generations for each replicate, with first 50% discarded as

burn-in

Fig. 5. The boxplots show the values of the error metric over 50 replicates as

the number of genes (G), and the number of individuals (I) vary when there is

only one species. There is a x � Beta(8,2) hyperprior. Epsilon is 0.0001, and

50 000 000 MCMC generations for each replicate, with first 50% discarded as

burn-in
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Varying e between 1e–4 and 1e–7 on the Thomomys data did

not have any noticeable effects on the similarity matrices generated

from SpeciesDelimitationAnalyzer (Fig. 6). Varying x had clear ef-

fects, with more and smaller clusters for the small x¼0.12. The

posterior mean values for x when estimated with a Beta(4,2) prior

distribution varied between 0.53 and 0.55 when e was in the range

not affecting the posteriors. ESSs for most parameters were well

above 300, except for some population size parameters for individ-

ual branches, and speciation.likelihood, where the smallest e values

gave low ESSs for x¼0.68 and x estimated with Beta(4,2). The re-

sults of the analyses of the Silene data showed little sensitivity to

whether the prior on x was informative or not (Fig. 7).

4 Discussion

4.1 Simulations
As expected, the accuracy increases with the number of unlinked

loci and the ability to detect species increases as the height of the

nodes increases. The insensitivity of the method to varying e suggests

that the approximation is unlikely to bias the results.

The results on the scenarios SIM-1 with one true species

show the method does not often infer false splits, but it is also

clear that a substantial number of sequences are required in order

to draw a firm conclusion even in this simplest of cases. A full

evaluation of the method on more complex cases is beyond the

scope of this article. Note that even with two true species,

there is a four-dimensional space of scenarios to explore (node

height, effective population size, number of individuals, and number

of loci).

In occasional replicates of the simulated data, convergence was

poor, something that potentially can affect the accuracy of the

method. Therefore, we strongly advice users of the method to care-

fully review convergence of the MCMC runs.

In general, the number of species was over-estimated in the scen-

arios used here (results not shown). However, one could add very re-

cent nodes to the scenarios which would tend to be falsely merged

and result in an under-estimate instead. It would be interesting to

evaluate the method on a large number of scenarios produced by

sampling from a birth–death process. For the moment we suggest

that estimates of numbers of species are treated with caution.

4.2 Empirical examples
The insensitivity of DISSECT to e suggested by the results from the

simulated data seems corroborated by the Thomomys data. In data-

sets of the size evaluated here, there is far too little information to

detect node heights smaller than 0.0001 substitutions per site. On

the other hand, the impact of x on the data was noticeable, indicat-

ing that the data are not informative enough to be strongly conclu-

sive about species delimitations.

Fig. 6. Similarity matrices for the Thomomys dataset under various e and col-

lapse weight (x) values. The squares represent posterior probabilities

(white¼ 0, black¼ 1) for pairs of individuals to belong to the same cluster.

The ESS values are ESSs for speciation.likelihood. The right column shows

results when a Beta prior distribution with parameters 4 and 2 was used

Fig. 7. Species tree and similarity matrices for the Silene dataset under

e¼1e–4 and A) x � Beta(4,2) and B) x � Beta(1,1). The squares represent pos-

terior probabilities (white¼ 0, black¼ 1) for pairs of individuals belonging to

the same cluster. The lines in the matrix denote species delimitations as used

by Aydin et al. (2014). Labels on branches denote posterior probabilities for

clades of individuals, bars represent the 95% highest posterior densities for

node heights
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The ambiguous assignment of several individuals in the

Thomomys dataset may indicate violations to the assumptions of

the model (e.g. no hybridizations), or that the data are not inform-

ative enough. To assess absolute fit of the data to the model, poster-

ior predictive simulation-based model checks may give clues to the

reasons for this (Reid et al., 2013). Indeed, the Thomomys data

showed poor fit to the multispecies coalescent model in the survey

by Reid et al. (2013), and one possible reason to this might be

mis-assignment of alleles to species.

The results of our analysis of the data from Silene sect.

Cryptoneurae (Fig. 7) are in agreement with the conclusions of

Aydin et al. (2014). The posterior probabilities for clades and MSC

membership are almost identical from the analysis with an inform-

ative Beta prior (Fig. 7A) to that with an uninfirmative prior

(Fig. 7B). However, the support for pairs of individuals belonging to

the same species (cluster) is often low. We propose that a possible

reason for this pattern, also seen in the Thomomys data, might

be structured populations due to for example, gradual speciation

(see also below). If that is the case, it might be convenient to use a

combination of species tree support for clades and the pairwise simi-

larity matrix to aid further considerations about species member-

ships. High posterior support for clades in the species and

congruence among gene trees, but low resolution below that may

indicate occasional migration/hybridization. The multispecies

coalescent model assumes no migration after speciation, which is

instantaneous. This is probably violated in most cases.

Zhang et al. (2011) found that low rates (<0.1 migrant per gen-

eration) of migration had virtually no effect on the accuracy of

BP&P in a simulation study. However, at least when sample size is

small, a single sampled recent migrant can cause severe effects. The

coalescent prior on the gene trees will affect them in a way that sin-

gle recent introgressions will be ‘pushed back’ by other gene trees

that reflect the ‘true’ speciation event, such that the coalescent time

for the migrant may be biased. More research is needed to evaluate

the robustness of the model to hybridization, and in particular per-

haps, to gradual isolation of species, which may be the most com-

mon form of speciation (e.g. Barton and Charlesworth, 1984).

Recent studies (Heled et al., 2013; Leaché et al., 2014a) indicate

relative robustness of the MSC model to gradual speciation models

when it comes to species tree topology inference, but severe effects

regarding polation size and divergence time estimates. The effect on

MSCSD methods remains to be explored using both simulated and

empirical datasets.

4.3 Conclusion
‘Given the intrinsic theoretical and empirical difficulties of the prob-

lem, any success would be surprising.’ (O’Meara, 2010). We believe

that DISSECT is a useful step forward on the theoretical and compu-

tational side. The multispecies coalescent model has assumptions

that are likely to be violated and it remains to be seen how import-

ant these are for empirical data.

We have not formally evaluated the accuracy of the species trees

produced by DISSECT. However, apart from the approximation

involving e, and the slightly different prior on the tree root height,

the DISSECT model, when conditioned on a particular clustering Z,

is equivalent to *BEAST using Z to assign individuals to species.

This means that DISSECT can be used as in a regular *BEAST ana-

lysis, taking uncertainties in species delimitation into account. The

new version of BP&P, which appeared as advance access (Yang and

Rannala, 2014) late in the review process of this article has similar

properties, and the accuracy of the two approaches may now be

compared.
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