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Abstract

Motivation: It has recently become possible to build reliable de novo models of proteins if a mul-

tiple sequence alignment (MSA) of at least 1000 homologous sequences can be built. Methods of

global statistical network analysis can explain the observed correlations between columns in the

MSA by a small set of directly coupled pairs of columns. Strong couplings are indicative of resi-

due-residue contacts, and from the predicted contacts a structure can be computed. Here, we ex-

ploit the structural regularity of paired b-strands that leads to characteristic patterns in the noisy

matrices of couplings. The b–b contacts should be detected more reliably than single contacts,

reducing the required number of sequences in the MSAs.

Results: bbcontacts predicts b–b contacts by detecting these characteristic patterns in the 2D map

of coupling scores using two hidden Markov models (HMMs), one for parallel and one for antiparal-

lel contacts. b-bulges are modelled as indel states. In contrast to existing methods, bbcontacts uses

predicted instead of true secondary structure. On a standard set of 916 test proteins, 34% of which

have MSAs with<1000 sequences, bbcontacts achieves 50% precision for contacting b–b residue

pairs at 50% recall using predicted secondary structure and 64% precision at 64% recall using true

secondary structure, while existing tools achieve around 45% precision at 45% recall using true

secondary structure.

Availability and implementation: bbcontacts is open source software (GNU Affero GPL v3) avail-

able at https://bitbucket.org/soedinglab/bbcontacts

Contact: jessica.andreani@mines.org or soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Methods for protein structure prediction can be classified into tem-

plate-based and de novo methods. The first group model the struc-

ture for a query protein based on a sequence alignment with a

homologous template protein of known structure. This class of

methods is by far the most widely used for its speed and reliability.

Many protein families lack a 3D template, and therefore much effort

has been invested into developing methods for de novo protein

structure prediction.

The most successful de novo prediction methods, such as

ROSETTA (Leaver-Fay et al., 2011), are based on complex,

knowledge-based scoring functions and structural fragment assem-

bly. Even though in roughly a quarter of the cases the top methods

can produce models with the correct fold (Tai et al., 2014), their

practical usefulness is severely limited by the difficulty of predicting

which models are correct.

An alternative de novo approach relies on the observation that

correlated mutations between pairs of multiple sequence alignment

(MSA) columns could predict physical contacts between residues

(Göbel et al., 1994). Furthermore, it was realized that only few cor-

rectly predicted residue-residue contacts (�10% of the number of

residues) are sufficient to predict the correct protein fold (Kim et al.,
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2014; Skolnick et al., 1997). However, it was only recently that stat-

istical methods were applied to the MSAs that could distinguish dir-

ect couplings between MSA columns from mere transitive

correlations (Marks et al., 2011; Weigt et al., 2009). This allowed

for the first time the reliable de novo prediction of structures for

proteins with many homologs (Marks et al., 2011; Hopf et al.,

2012; Nugent and Jones, 2012). In the past few years, these methods

have been further improved by applying different approaches of dir-

ect coupling analysis (Ekeberg et al., 2013; Jones et al., 2012;

Kamisetty et al., 2013). Yet, obtaining reliable structural models re-

quires large numbers of homologous sequences, still severely limit-

ing the scope of these methods.

Here, our goal is to increase the reliability of contact predictions

by detecting patterns in the matrix of predicted couplings corres-

ponding to interactions between secondary structure elements. We

focus on the case of b–b contacts because of their strongly con-

strained spatial arrangement. b-sheets are composed of regularly

arranged pairs of interacting b-strands. The interaction between two

extended b-strands is defined on the basis of regular patterns of

hydrogen bonds, connecting residues in two different strands in ei-

ther a parallel or an antiparallel fashion (Kabsch and Sander, 1983).

The prediction of contacts between b-residues has applications in

protein design (Kortemme, 1998; Smith and Regan, 1995), in the

study of folding characteristics (Kamat and Lesk, 2007; Merkel and

Regan, 2000) and in de novo protein structure prediction (Klepeis

and Floudas, 2003; Ruczinski et al., 2002). According to a recent

study, while direct contact predictions have similar average preci-

sion for mainly-a and mainly-b proteins, the structural models ob-

tained using these predictions as restraints are more accurate for

mainly-a proteins (Michel et al., 2014).

A variety of methods have been developed for the prediction of b–b
contacts. An early method used statistical potentials for pairs of interact-

ing b-strand residues (Hubbard, 1994). Baldi et al. (2000) were the first

to predict b–b contacts with neural networks. Cheng and Baldi (2005)

introduced the important idea of exploiting the topology of b-sheets in

their BetaPro method by filtering out the solutions incompatible with

the specific geometry of b-sheets. In MLN and MLN-2S, Lippi and

Frasconi (2009) used Markov logic networks to incorporate structure-

based constraints directly into the learning process.

Two recent methods use correlated mutation signatures to pre-

dict b-sheets. CMM (Burkoff et al., 2013) integrates these with a

b-topology model. BCov (Savojardo et al., 2013) processes predicted

coupling scores with integer programming to enforce topological

constraints. CMM, BCov and MLN-2S display the best b–b contact

prediction performances so far (Savojardo et al., 2013).

Finally, some methods aiming to predict all protein contacts (not

only b–b contacts) also use topological information, in particular

related to b-sheet organization: CMAPpro (Di Lena et al., 2012),

PhyCMAP (Wang and Xu, 2013), PconsC2 (Skwark et al., 2014).

PconsC2 reports the highest contact prediction accuracies to date. It

takes direct coupling scores from the PconsC meta-predictor as in-

put and trains random forests on local 11�11 windows in the cou-

pling matrix to predict the contact state of the central cell.

Existing b–b contact prediction methods have used known in-

stead of predicted secondary structure. It is unclear, however, how

they would perform in practice when substituting true with pre-

dicted secondary structure. Here, we describe a method to predict

b–b contacts that, even though it makes use of predicted instead of

true secondary structure, achieves better performance than previous

methods. We designed two hidden Markov models (HMMs) for

parallel and antiparallel b–b contacts that integrate signals from the

predicted couplings and the predicted secondary structure.

2 Methods

2.1 General approach
Similar to contact maps or distance maps, which can be used to de-

scribe a protein structure or compare two structures (Holm and

Sander, 1996), direct coupling predictions can be mapped on a two-

dimensional grid. Each cell in the resulting matrix contains the

strength of the predicted coupling, indicating whether the two cor-

responding positions in the protein are reliably predicted to be in

direct physical contact. We call such representations ‘matrices of

predicted couplings’ or simply ‘coupling matrices’.

Interactions between b-strands create conspicuous patterns in

the coupling matrices, linked to the regularity of their 3D structural

arrangement. Figure 1a shows a coupling matrix for a domain of

PDB structure 3dk9, with four highlighted antiparallel b–b contacts.

A schematic antiparallel pattern is displayed in Figure 1c together

with a diagram showing the corresponding contacts between

b-residues. In short, b-strand interactions create a diagonal stretch

of strong couplings between the closest residues. This stretch is per-

pendicular (respectively parallel) to the diagonal of the coupling ma-

trix for antiparallel (respectively parallel) b-strands. Most often,

given a contact between residues i and j on this main diagonal,

increased couplings can also be observed between i and j 6 2 and

between j and i 6 2, as the corresponding side-chains are close in

space and point in the same direction. Such couplings form ‘second-

ary diagonals’ on both sides of the main diagonal of the pattern.

Interactions between b-strands are very regular, but b-bulges con-

stitute a frequent type of irregularity disrupting the regular alternation

of side-chain direction (Chan et al., 1993; Craveur et al., 2013;

Richardson et al., 1978). The most frequent b-bulges arise from the

insertion of a residue between successive hydrogen bonds connecting

two b-strands. Such b-bulges induce a shift in the main diagonal of

the pattern by one position, as illustrated in Figure 1d. In some rarer

cases, a b-bulge can arise from the insertion of one residue on each

b-strand (so that the main diagonal of the pattern is not shifted) or

from the insertion of more than one residue on one b-strand (so that

the main diagonal of the pattern is shifted by more than one position).

To detect the patterns created by b–b contacts, we designed the

HMM architecture shown in Figure 2. In contrast to most HMMs

used in bioinformatics applications (e.g. transmembrane helix pre-

dictions), our HMM detects patterns in a 2D map and not in a 1D

sequence or 1D sequence profile. The nine hidden states circled in

Figure 2 represent different types of interactions between pairs of

b-residues. The ‘first’ and ‘last’ states represent the first and last

non-bulge residue–residue contacts. The ‘internal’ state is the main

HMM state and b–b contact predictions can be extended to any

length by looping through this state. b-bulges correspond to indels

in HMMs used for pairwise sequence alignment. We only take into

account b-bulges inducing a shift in the pattern and this shift is

achieved through the transition from bulge i0 to bulge i1 or from

bulge j0 to bulge j1. All HMM transitions except those between two

bulge states correspond to a diagonal (respectively antidiagonal) dis-

placement for parallel (respectively antiparallel) b–b contacts. Bulge

states i2 and j2 allow for the insertion of two residues in the same

b-bulge; we do not allow for the insertion of more than two resi-

dues. The ‘start’ and ‘end’ states are added for modelling both ends

of the contact between two extended b-strands. Figures 1c and d

show coupling patterns with annotated HMM states.

The same HMM architecture is used for parallel and antiparallel

b–b contacts, but two different sets of HMM parameters are trained

(Section 2.5) and the direction of HMM decoding is diagonal for

parallel contacts and antidiagonal for antiparallel ones.
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The observed variables are the real-valued predicted couplings as

well as the predicted secondary structure states (or the true second-

ary structure states assigned by DSSP (Kabsch and Sander, 1983),

when used in order to compare our method with existing ones). The

HMM emission probabilities consequently include a product of con-

tinuous emissions accounting for the observed couplings (including

signals from the main diagonal and the secondary diagonals of the

pattern) and discrete emissions accounting for the discrete secondary

structure states (H, E and C). These emissions are described in more

detail in Section 2.5.

A path (sequence of states) traced by the HMM through the

coupling matrix corresponds to a contact between two extended

b-strands. Each state within the path corresponds to an interaction

between two b-residues. We want to detect all patterns in the cou-

pling matrix corresponding to parallel and antiparallel b-strand con-

tacts. To this effect, we use a local version of the Viterbi algorithm,

so that we can predict several paths that can start and end anywhere

in the coupling matrix. The Viterbi score associated to a path meas-

ures the confidence of the corresponding prediction. We rank the

paths by decreasing Viterbi score and retain all paths (above a given

threshold) which satisfy the topological constraints associated with

b-strand pairings.

In the following sections, we describe the training and bench-

marking of bbcontacts.

2.2 Datasets
To compare our method with existing ones, two previously pub-

lished test datasets were used. The BetaSheet916 dataset (Cheng and

Baldi, 2005) has been routinely used as a benchmark dataset for b–b
contact prediction. It is also our main test dataset. It consists of 916

protein chains containing 31 638 b-residue contacts. Savojardo et al.

(2013) recently proposed a complementary dataset, built from more

recent structures. This new dataset, BetaSheet1452, consists of 1452

protein chains containing 56 552 b-residue contacts. The two test

datasets are non-redundant at 20% sequence identity, both intern-

ally and with each other.

Our training dataset was built from the CATH database of pro-

tein domains v3.5 (Sillitoe et al., 2013). The building process aimed

to reduce as much as possible the redundancy between the training

dataset and both test datasets at the fold (CATH Topology) level.

We extracted all CATH domains that did not belong to any of the

fold groups identified by CATH in the test datasets. We filtered the

resulting dataset to reduce internal redundancy, using the HH-suite

script pdbfilter.pl (Remmert et al., 2011). Finally, 943 domains

containing b-contacts form our training dataset (Supplementary

Dataset S1). Because not all chains from the test datasets were anno-

tated in CATH v3.5, there might be some residual redundancy be-

tween the training dataset and the test datasets. We checked that

this did not lead to overtraining of bbcontacts, by verifying that the

results did not deteriorate when taking the subset of each test dataset

that is strictly non-redundant with the training dataset at the fold

level (see Supplementary Results and Supplementary Figure S1).

(a) (b)
(c)

(d)

Fig. 1. (a) CCMpred coupling matrix (upper-left) and coarse Cb-Cb distance matrix (lower-right) for one domain of PDB structure 3dk9, with four boxed regions

containing patterns created by antiparallel b-strands. (b) Upper-left: b–b contacts predicted by bbcontacts using predicted secondary structure (triangles). The

Viterbi score of the local alignment is the confidence value. Lower-right: coarse Cb-Cb distance matrix. The true b–b contacts (annotated by DSSP) are shown as

open circles. (c and d) Schematic diagrams describing (c) a regular antiparallel interaction between two b-strands and the associated pattern and (d) an antiparal-

lel interaction involving a b-bulge and the associated pattern, displaying a shift in the main diagonal. The HMM states associated to the main diagonal are anno-

tated in patterns (c and d) (‘int’ is short for internal and ‘bi0’, ‘bi1’ for bulge i0, bulge i1; see also Fig. 2). In (c), the dotted lines delineate the three couplings—one

main diagonal and two secondary diagonal couplings—entering into the emission probability calculation for cell (6,2). The arrow indicates the direction of Viterbi

score calculation and decoding for antiparallel contacts

Fig. 2. HMM architecture used in this study. Bold arrows represent the most

frequently observed transitions and dashed arrows represent rare transitions.

For the HMM detecting parallel (respectively, antiparallel) contacts, most tran-

sitions correspond to a diagonal (respectively, antidiagonal) displacement in

the coupling matrix, except the transitions between bulge i states (transitions

along the j axis with i remaining fixed, such as the one displayed in Fig. 1d)

and the transitions between bulge j states (transitions along the i axis with j

remaining fixed). A b-bulge involves at least one (and at most two) inserted

residue(s) on one of the two strands, thus state bulge i0 can only be followed

by bulge i1 (same for bulge j0! bulge j1)
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All b-contacts were assigned based on backbone contacts, fol-

lowing the DSSP definition (Kabsch and Sander, 1983). For both

training and testing, the DSSP assignment was reduced to three

states (B and E were mapped to E; H, I and G were mapped to H; T,

S and C were mapped to C).

b-bulges were detected by PROMOTIF (Hutchinson and

Thornton, 1996). We then filtered the detected b-bulges to retain

only those inducing a shift of the main diagonal in the direct cou-

pling pattern (see Fig. 1d).

2.3 Data used for HMM training
For the training and test datasets, we built MSAs by running

HHblits (Remmert et al., 2011) against the uniprot20 database

dated March 2013. Each MSA was filtered down to 90% sequence

identity with HHfilter (Remmert et al., 2011). Supplementary

Figure S2 shows the distribution of the number of sequences in the

resulting MSAs for each dataset.

Secondary structure predictions were obtained with PSIPRED

(Jones, 1999), using the HH-suite script addss.pl for improved

performance (Remmert et al., 2011). Direct coupling predictions

were obtained with CCMpred (Seemayer et al., 2014), a fast imple-

mentation of the state-of-the-art methods by Kamisetty et al. (2013)

and Ekeberg et al. (2013).

We observed that the range of predicted couplings varied greatly

depending on the number of sequences N in the MSA and the pro-

tein length L. We found that g ¼
ffiffiffiffiffi

N
p

=L was a good descriptor for

the range of couplings observed in a predicted matrix. For each do-

main in the training dataset, we filtered the initial MSA in order to

build MSAs of reduced diversity, using the qsc parameter of

HHfilter (Remmert et al., 2011). We derived 12 datasets for g
¼ 0:05; 0:1; 0:2; :::; 1:0; 1:2 (see Supplementary Table S1). We ran

CCMpred on all diversity-filtered alignments and used the resulting

coupling matrices to train the coupling-based part of the HMM

emission probabilities.

2.4 Local background correction of the coupling

matrices
The coupling matrices sometimes display darker regions that can

lead to many false positive predictions (Supplementary Figure S3a).

We therefore applied the following local background correction pro-

cedure to all coupling matrices in the training and test datasets:

from each coupling, we subtracted the average coupling over an

area of size (2Sþ1)� (2Sþ1), extending by S cells in each direction.

For single domains with a good alignment coverage (including most

domains in the training dataset), this procedure has almost no effect

on the coupling values (Supplementary Figure S3b).

2.5 HMM parameters
The HMMs were trained using the labeled data contained in the

training dataset. We trained two sets of HMM parameters separ-

ately for parallel and antiparallel b-strand pairings. We did not train

bbcontacts for the detection of b-bridges, because we do not expect

the residues involved in isolated b-bridges to be generally predicted

as b-residues by PSIPRED, and because the coupling signals typically

do not form patterns for such isolated b-contacts.

The HMM transition probabilities were trained by counting

how many times each transition was used in the training dataset.

The HMM emission probabilities contain a product of two terms,

one based on couplings and one based on secondary structure (from

either PSIPRED predictions or DSSP assignments). Each term is ex-

pressed as the odds-ratio of the conditional distribution of the

observed variables when in one of the HMM states, relative to the

background distribution.

2.5.1 Coupling-based emissions

The coupling-based part of the emission probability at position (i, j)

was expressed as the product of three odds-ratios relative to the

background: one for the central coupling at position (i, j) belonging

to the main diagonal of the pattern and one for each of the two cou-

plings at the positions adjacent to (i, j) belonging to the secondary

diagonals of the pattern [Supplementary Equations (1)–(4)]. This is

illustrated in Figure 1c: the dotted lines delineate the three couplings

entering into the emission probability calculations for cell (i¼6,

j¼2), at positions (i, j), (i�1, j�1) and (iþ1, jþ1). These adja-

cent cells are chosen rather than ði; j62Þ and ði62; jÞ to avoid mul-

tiple counting.

Because of data scarcity, we did not distinguish between different

HMM states and bundled all b-contacts together for this stage of the

training. For each decoding direction (parallel and antiparallel), we

thus had to describe three coupling distributions: one for the back-

ground, one for the main diagonal of the patterns and one for the

secondary diagonals of the patterns.

After centering the coupling distributions at zero, we fitted their

density using two transformed Gamma distributions, one for posi-

tive couplings and one for negative couplings. To describe the dens-

ity fit for a given value of g, we used seven parameters: the shift

needed to center the coupling distribution, the relative weight of the

positive and negative sides, plus two transformed Gamma param-

eters for negative couplings and three for positive couplings. The

shift was fitted as a quadratic function of g and all remaining param-

eters were expressed as linear functions of g. The optimization was

performed by maximum likelihood estimation. The final number of

parameters for the coupling-based emissions is 90. Details are given

in the Supplementary Methods and the final fits are illustrated in

Supplementary Figure S4.

2.5.2 Secondary-structure-based emissions

This part of the emission probabilities was trained separately for the

PSIPRED predictions and the DSSP assignments. We used a discrete

mapping of the secondary structure observations to three states (E,

H and C). In the PSIPRED case, the most probable secondary struc-

ture state was used for each position.

We denote by z an HMM state and by ðri; rjÞ the pair of second-

ary structure states at position (i, j). We tested two types of second-

ary-structure-based emissions. The ‘non-conditional’ emissions were

defined as the set of probabilities pðri;rjjzÞ, as expected from the

traditional definition of emission probabilities. However, this does

not account for the important fact that by definition, a secondary

structure element is a segment of residues immediately adjacent in

sequence. Therefore, the ‘conditional’ emissions were defined as the

set of probabilities pðri;rjjriprev
; rjprev

; zÞ of observing a pair of sec-

ondary structure states ðri;rjÞ in state z, given that we additionally

already observed secondary structure states ðriprev
; rjprev

Þ at the previ-

ous position ðiprev; jprevÞ.
We also added pseudocounts derived from the non-conditional

probability distribution to the conditional probabilities: when calcu-

lating the conditional probabilities, we added N0 counts from the

non-conditional frequencies to the observed conditional counts.

This effectively interpolates between the conditional and non-condi-

tional distributions: for states with few conditional counts relative

to N0, the conditional probabilities with added pseudocounts will be
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very similar to the non-conditional probabilities. Different values of

N0 were tested (see Section 3.1).

Because we found that the secondary structure states for the cou-

pling matrix cells situated immediately before and immediately after

a b-strand interaction contain information about the likelihood to

start and end this interaction, the model also contains secondary-

structure-based emission terms for the start and end states. The start

term is always a non-conditional probability and can also be seen as

a prior based on secondary structure.

In total, there are 415 parameters for the DSSP secondary-struc-

ture based emissions and 415 parameters for the PSIPRED-based

emissions [see Supplementary Methods and Supplementary

Equations (5)–(10)].

2.5.3 Prior probability distribution depending on sequence

separation

The sequence separation between two interacting b-strands has a

lower bound due to geometric considerations, especially for the par-

allel case. In addition, it is strongly biased in practice, especially for

antiparallel b-strands, a majority of which are b-hairpins for which

the two strands are separated by a short loop.

Thus, we introduced a prior for starting a b-strand interaction

depending on the sequence separation between the first pair of inter-

acting residues. This prior is based on 34 fitted parameters for

PSIPRED-based predictions and 34 fitted parameters for DSSP-

based predictions [Supplementary Equation (11) and Figure S5]. We

also introduced constraints to prevent the detection of b-contacts for

positions too close to the diagonal of the coupling matrix. More de-

tails are given in the Supplementary Methods.

2.6 HMM decoding
Following the ideas introduced by Muckstein et al. (2002) for local

sequence–sequence alignment and by Biegert and Söding (2008) for

local HMM–HMM alignment, we use a local version of the Viterbi

algorithm for decoding a matrix of predicted couplings to detect pat-

terns corresponding to b-strand interactions. We dispense with an

explicit background state by using odds-ratio emission probabilities:

each emission probability corresponding to an HMM state is always

divided by a background probability. The HMM paths can start and

end anywhere in the coupling matrix. We do not detect a single

most likely path corresponding to the best Viterbi score, but instead

all paths above a certain Viterbi score threshold.

For each position (i, j) and each state z, the Viterbi variable V [i,

j, z] is defined as the probability of ending a path at position (i, j)

and in state z. The local Viterbi algorithm consists of four major

steps: initialization, recursion, termination and back-tracing [see

Supplementary Methods, including Supplementary Equations

(12)–(14)].

In the initialization step, the Viterbi variables V½i; j; start� are ini-

tialized for all positions (i, j) in the coupling matrix and the priors

described above are applied. In the recursion step, all V½i; j; z� for

z 2j fstart; endg are calculated using the transition and emission

probabilities. In the termination step, the V½i; j; end� probabilities are

calculated. During recursion and termination, pointers are used to

keep track of the most likely paths.

The initialization, recursion and termination steps of the Viterbi

decoding are performed separately for the parallel and antiparallel

directions, but all V½i; j; end� scores are then merged and sorted in

decreasing order for the final back-tracing step. The most likely

path, corresponding to the highest V[i, j, end] probability, is

retrieved by back-tracing through the saved pointers. Then, we cross

out a region extending by 6 3 residues around this path in the

Viterbi matrix corresponding to the path direction (parallel or anti-

parallel), i.e. we do not take into account any more probabilities for

this region. This avoids retrieving many variants of a contact be-

tween the same b-strands. The next path that does not contain any

crossed-out residue pairs is then saved and a region around this path

is crossed-out. We proceed iteratively in this manner until we reach

a given Viterbi score threshold.

2.6.1 Prediction-shortening mode

For PSIPRED-based results, in some cases, the Viterbi paths can be

very long because of the spatial architecture of the protein (see

Supplementary Figure S6 for an example). We designed a procedure,

called ‘PSM’ (prediction-shortening mode), to ensure that the pre-

dicted parallel paths stay below 11 residue pairs in length and the

predicted antiparallel paths below 15 residue pairs. When PSM is

triggered, it shortens the predicted paths by iteratively decreasing

the transition probabilities and rerunning the Viterbi algorithm until

the predicted paths are below the length threshold. For DSSP-based

results, such a procedure is unnecessary because the secondary-struc-

ture-based probabilities make it impossible to predict contacts be-

tween non-b-residues, so that the length of any path is limited by the

length of the longest b-strands.

More details about PSM are given in the Supplementary

Methods.

2.7 Topology filtering
When all most likely Viterbi paths have been retrieved, a final post-

processing step is applied to filter the incompatible paths given the

topological constraints that apply to b–b contacts. We go through

the list of retrieved paths sorted by decreasing Viterbi score. Each

path can be retained or excluded. A path is excluded if it contains a

residue that already has two b-partners in previously retained paths

or a residue pair that already belongs to a previous path. Using this

residue-based filtering rather than a strand-based filtering means

that bbcontacts can handle cases where a b-strand is in contact with

more than two strands, as also pointed out for previous methods

(Cheng and Baldi, 2005). In addition, when the DSSP assignment is

used, we can rely on the exact positions of b-strands, so we exclude

any path containing a contact between two residues from the same

b-strand or between a pair of b-strands that already belongs to a pre-

vious path.

2.8 Evaluation
Performance is measured in terms of precision and recall at the

strand level and at the residue level, as was done for previous b–b
contact prediction methods. The F1-score (harmonic mean of preci-

sion and recall) is also used, as it provides a single value to measure

the quality of the b–b contact predictions. bbcontacts is compared

with the best methods available so far: BetaPro (Cheng and Baldi,

2005), MLN and MLN-2S (Lippi and Frasconi, 2009), CMM

(Burkoff et al., 2013) and BCov (Savojardo et al., 2013).

Residue-level evaluation is straightforward in all cases. Strand-

level evaluation is only straightforward for DSSP-based results. For

PSIPRED-based results, because the true b-strand positions are

unknown, additional conventions need to be adopted for the

strand-level evaluation (see Supplementary Methods). Because

PSIPRED-based strand-level evaluation is based on these additional

criteria, it is provided only in an indicative manner and the residue-

level evaluation forms the most solid basis for comparison between

different versions of our method.
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bbcontacts is also compared with general contact predictors:

CCMpred (Seemayer et al., 2014), PhyCMAP (Wang and Xu, 2013)

and PconsC2 (Skwark et al., 2014). Baselines for these methods are

obtained by restricting predictions to DSSP-defined b-strand regions.

To make the comparison fairer to these methods, we exclude all

false positives with sequence separation smaller than 6 from their

predictions. True positives are unchanged (b–b contacts assigned by

DSSP).

3 Results and discussion

For the sake of simplicity, all results are shown for the BetaSheet916

test dataset. However, the trends described also hold for the training

dataset and the BetaSheet1452 test dataset (see Supplementary

Results and Supplementary Figures S21–25).

3.1 Contribution of the different terms in bbcontacts
This section illustrates how much the various steps composing the

bbcontacts method contribute to its performance. Here, the second-

ary structure predicted by PSIPRED is used as an input. This section

is focused on residue-level performance because this assessment is

more stringent.

We use a reference version of bbcontacts in which local back-

ground correction with S¼10 is applied to the coupling matrices,

the conditional secondary-structure-based emission probabilities

with N0¼10 000 pseudocounts from the non-conditional distribu-

tion are used, the prior depending on sequence separation is used

and PSM is turned off. We then modify one element of the model at

a time and discuss the impact of each of the corresponding terms.

First of all, when developing bbcontacts, we tested ‘conditional’

and ‘non-conditional’ secondary-structure-based emission probabil-

ities (see ‘Methods’). We also tried adding pseudocounts from the

non-conditional probability distribution to the conditional probabil-

ities. This was motivated by the observation that the conditional

probabilities for some rarely observed states were derived from very

low counts; in this case, adding counts from the non-conditional dis-

tribution (for which all states are well populated) should make the

resulting probabilities more robust. However, we found an optimal

number of pseudocounts N0 of 10 000 on the training dataset (see

Supplementary Figure S7), much larger than we would expect if the

pseudocounts were just used to avoid overtraining of the conditional

probabilities derived from low counts. This large number of pseudo-

counts actually performs an interpolation between the conditional

and non-conditional probability distributions.

This can be understood by noting that the dependency between

two consecutive states is already described to some extent by the

HMM transitions for the HMM states, but not for the background.

Consequently, the conditional probabilities are better suited to the

background than to the HMM states. Using 10 000 pseudocounts,

the secondary-structure-based probabilities are very close to the con-

ditional ones for the background (which has several million counts

in the training data), but intermediate between conditional and non-

conditional for the HMM states (which have a few hundred to a few

thousand counts).

Figure 3a shows the prediction results using the different types of

secondary-structure-based emissions: purely non-conditional, purely

conditional or conditional with 10 000 pseudocounts taken from the

non-conditional distribution. Adding pseudocounts from the non-

conditional distribution to the conditional probabilities significantly

improves the performance of bbcontacts.

Another major contribution to the performance of bbcontacts is

brought by correcting the local background of the coupling matrices

in order to remove false positives, by avoiding the presence of dark

regions concentrating strong couplings in the predicted coupling

matrices (see ‘Methods’). The results in Figure 3b show a notable

performance improvement when using local background correction,

for the three displayed values of S. We chose S¼10 as the default

parameter for bbcontacts, because it displays the best improvement

in precision without loss in recall. The results for S¼5 show a

slightly higher precision for high-confidence predictions, but the

final recall is also lower.

Other terms in the bbcontacts model have a smaller influence on

the final performance. The prior depending on sequence separation

has a small, but consistently positive effect on the performance of

bbcontacts (Supplementary Figure S8a). The influence of including

signal from the secondary diagonals of the patterns as well as signal

from the main diagonal is analyzed in Supplementary Figure S8b.

Inclusion of secondary diagonal signal notably increases the final re-

call reached by bbcontacts. However, taking signal only from the

main diagonal slightly increases the precision for high-scoring predic-

tions. This effect is dampened when PSM is turned on. Finally, the red

traces in Figure 4b show that PSM slightly increases the precision for

high-confidence residue-level predictions, because it removes false

positives belonging to long paths with large Viterbi scores. The

strand-level performance is almost unaffected by PSM (Fig. 4a).

Although all methodological choices for bbcontacts illustrated in

this section relate to PSIPRED-based b–b contact predictions, the

performance of bbcontacts when using the DSSP assignments as an

input is either improved or unchanged by these choices (see

Supplementary Figures S9 and S10).

3.2 Comparison with previous methods
Figure 4 presents the precision-recall results on the BetaSheet916

dataset for the final version of bbcontacts compared with previous

(a)

(b)

Fig. 3. Influence of different model parameters on the residue-level perform-

ance of bbcontacts on the BetaSheet916 dataset, using PSIPRED predictions

as an input. (a) Influence of the type of secondary-structure-based emissions:

non-conditional (dotted line), conditional (dashed line), conditional with

10 000 pseudocounts (solid line). (b) Influence of local background correction

applied to coupling matrices, for different values of S
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b–b contact prediction methods, at the strand level (Fig. 4a) and at

the residue level (Fig. 4b). Supplementary Tables S2 and S3 present

a summary of this comparison. Supplementary Figure S11 shows the

strand-level results when testing for correct orientation of predicted

b-strands as well as correct pairing.

As a complementary view, Figure 1b and Supplementary Figure

S12 show examples of contact maps predicted by bbcontacts using

predicted secondary structure. These illustrate the capacity of

bbcontacts to remove noise from CCMpred coupling matrices.

Figure 4a, b and Supplementary Figure S11 clearly show that for

DSSP-based predictions (blue traces, blue symbols), bbcontacts out-

performs all previous methods, even though it was not specifically

designed to perform well for DSSP-assigned secondary structure.

This is particularly striking at the residue level. The effect is not as

strong at the strand level because bbcontacts was not trained to de-

tect isolated b-bridges, as we cannot expect secondary structure pre-

diction methods to detect isolated b-residues. However, b-bridges

are included in the performance assessment and the strand-level re-

call particularly suffers from this as b-bridges represent 17.6% of

the b-strand pairs in the BetaSheet916 dataset.

As expected, PSIPRED-based predictions (red traces in Fig. 4

and Supplementary Figure S11) are less confident than DSSP-based

predictions, but they still exhibit remarkable precision and recall. In

particular, residue-level PSIPRED-based predictions display better

precision and recall than previous methods when they use the true

secondary structure. The gap between DSSP-based and PSIPRED-

based performances (i.e. between the blue and red lines in Fig. 4) is

explained by errors in the PSIPRED predictions, but also by the

major advantage of knowing the exact DSSP strands compared with

strand predictions (however accurate), since using true secondary

structure we can rule out entirely any b–b contact occurring outside

of the strand regions.

The precision-recall curves show that bbcontacts not only has

good overall performance, but also provides (through the Viterbi

score associated with each path) a measure of the confidence we can

place in each prediction. The results of bbcontacts are quite robust:

the precision drops very slowly with recall, up to around 50% recall

for DSSP-based and 40% recall for PSIPRED-based predictions.

To investigate how much of the performance improvement ob-

tained with bbcontacts is due to using better contact predictions as

input, we introduced additional reference points BCov* and

CMM*, corresponding to results obtained when couplings predicted

with CCMpred are used as an input to the b-contact prediction algo-

rithms from BCov and CMM. Better input couplings strongly im-

prove b–b contact predictions, but this does not explain the full

extent of the bbcontacts DSSP-based performance (see

Supplementary Results and Supplementary Figure S13).

In Supplementary Figures S14 and S15, we analyze the perform-

ance of bbcontacts for each of the 916 test cases depending on the

alignment size N and on the CCMpred precision for L/5 predicted

contacts (where L is the length of the protein). For each test case,

the F1-score is calculated for all b–b contact predictions above a

Viterbi score threshold chosen to maximize the residue-level F1-

score on the training dataset (Supplementary Figure S16). As ex-

pected, the trend for bbcontacts performance is to increase with N

and with CCMpred precision. However, even for alignments con-

taining a few hundred sequences, a number of cases display similar

performance compared with cases with many homologs.

Note that the precision and recall reported in this work are ra-

ther conservative estimates of how useful the predicted contacts

might be for structural modelling. Indeed, in compliance with previ-

ously published approaches, the evaluation adopted in this paper

relies on the DSSP definition of b–b contacts, based on backbone

hydrogen bonds. Because of this rigid definition, close side-chain

contacts between pairs of residues which do not form backbone con-

tacts (such as pairs of bulge residues or pairs of residues immediately

adjacent to b-strands, but not assigned as b-residues by DSSP) can

(a)

(b)

(c)

Fig. 4. (a and b) Performance of bbcontacts compared with previous b–b con-

tact prediction methods on the BetaSheet916 dataset: (a) strand-level per-

formance for correct b-strand pairing and (b) residue-level performance.

Results for BetaPro, MLN, MLN-2S and BCov are taken from Savojardo et al.

(2013), results for CMM from Burkoff et al. (2013). Note that methods in blue

use known secondary structure assigned by DSSP, which is unavailable in

practice. (c) Comparison of residue-level performance of bbcontacts with

CCMpred, PhyCMAP and PconsC2 baselines (obtained by restricting the pre-

dictions to b-strand regions), in both the default and 6 Å tolerance evaluation

frameworks. The solid lines use DSSP assignments for evaluation. The

dashed lines use the 6 Å tolerance evaluation framework in which false posi-

tive residue pairs within a Cb distance of 6 Å are ignored (i.e. excluded from

the set of false positives), while true positives are unchanged
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be detected as false positives. A few such false positives are shown in

Figure 1b: several residue pairs predicted by bbcontacts (triangles)

but not assigned by DSSP (i.e. not in open circles) display distances

below 6 Å. Comparison of the solid and dashed red traces in Figure

4c and Supplementary Figure S17 shows that if we exclude all resi-

due pairs within 6 Å Cb distance from the false positives during

evaluation, there is a large increase in bbcontacts precision for

PSIPRED-based predictions, reaching �80% precision at 40% recall

on the full BetaSheet916 dataset (Supplementary Figure S17).

Finally, bbcontacts was compared with general contact predic-

tion methods: CCMpred (Seemayer et al., 2014), PhyCMAP (Wang

and Xu, 2013) and PconsC2 (Skwark et al., 2014). The results are

shown in Figure 4c, using both the DSSP-based evaluation frame-

work (solid lines) and the 6 Å distance tolerance (dashed lines). The

latter is a middle ground for evaluation, since bbcontacts was

trained to detect only b–b contacts strictly assigned by DSSP (mostly

distributed around 5 Å), while the general contact predictors are de-

signed to detect all contacts up to 8 Å. Due to the computational

cost of PconsC2, this evaluation is performed on a subset of

BetaSheet916 containing 186 protein chains (Supplementary

Dataset S2). However, the evaluation of bbcontacts, CCMpred and

PhyCMAP on the full BetaSheet916 dataset reported in

Supplementary Figure S17 shows very similar trends. As expected,

PhyCMAP, which does not use direct coupling analysis, displays

low precision even at low recall. PconsC2 improves largely over

PhyCMAP and CCMpred, but its precision drops much earlier with

recall than the bbcontacts precision, even when relaxing the evalu-

ation criteria to 6 Å tolerance.

Supplementary Figures S17–S19 show the results when using 8 Å

tolerance in the evaluation: in this case, we also remove many false

positives corresponding to predicted b–b contacts with a shifted

register. Even so, bbcontacts improves greatly over CCMpred and

PhyCMAP, and the PconsC2 precision-recall curve drops earlier

than the bbcontacts curve.

4 Conclusion

bbcontacts is the first predictor of b–b contacts that does not require

known secondary structure from DSSP and that therefore can be

used in practice. Having to use predicted instead of true secondary

structure makes b–b contact prediction a much more challenging

problem. In particular, we can no longer rely on the knowledge of

the exact b-strand positions.

Analyzing the contributions of different terms in bbcontacts

shows that the choices that have a strong impact on PSIPRED-based

predictions do not affect DSSP-based results to the same extent

(compare for instance Fig. 3 with Supplementary Figure S9). This

underlines the importance of specifically designing methods to deal

with predicted secondary structure.

bbcontacts also illustrates that HMMs are an attractive ap-

proach for statistical modelling of variable-length b–b contacts

based on the detection of specific patterns in the coupling matrices.

The use of a local Viterbi algorithm enables the detection of local

patterns.

In addition, bbcontacts can pick up signal in a number of align-

ments with relatively few homologous sequences. Another interest-

ing feature is that it provides a score for each predicted b-strand

contact, which expresses the reliability of the prediction. Finally,

bbcontacts is provided as free and open-source software with few

dependencies. The runtimes on a single core of an Intel Xeon E5-

2650 processor are typically under one minute for proteins up to

500 residues, and up to a few minutes when PSM gets triggered

(Supplementary Figure S20). This makes bbcontacts easily applica-

ble to a variety of situations, including predictions for large proteins

and large-scale b-contact prediction. Another possible application

for bbcontacts would be the case of inter-chain b-sheets, provided

enough homologs are available for both chains.

bbcontacts could be further improved by including additional in-

formation in the HMM emissions, such as amino acid profiles and

solvent accessibility predictions, or other input sources complement-

ing CCMpred, for instance PSICOV (Jones et al., 2012). Further

planned work involves incorporating input from predictors such as

CMAPpro (Di Lena et al., 2012) or PhyCMAP (Wang and Xu,

2013) which do not use direct coupling analysis and perform better

than CCMpred or PconsC2 when few homologous sequences are

available (Skwark et al., 2014). One advantage of our approach in

this respect is that it can handle new sources of input in a probabilis-

tic manner, through the addition of new terms in the emission prob-

abilities. Also, one could improve the use of topological constraints

by calculating posterior probabilities for all b-strand topologies that

can be built from the list of best Viterbi paths. Finally, the approach

developed in this study can be generalized to detect patterns of other

interacting secondary structure elements such as helix-helix and

helix-strand interactions and thus points to a promising avenue for

future research.

Acknowledgements

We thank Stefan Seemayer and Susann Vorberg for stimulating discussions

and Stefan Seemayer and Armin Meier for feedback on the paper draft.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft

(GRK1721 and SFB646 to J.S.); by the Bavarian Center for Molecular

Biosystems (BioSysNet); and by the Alexander von Humboldt Foundation

(Research Fellowship for Postdoctoral Researchers to J.A.). We thank

NVIDIA Corporation for donating two Tesla K40 GPUs used in this work.

Conflict of Interest: None declared.

References

Baldi,P. et al. (2000). Matching protein beta-sheet partners by feedforward

and recurrent neural networks. Proc. Int. Conf. Intell. Syst. Mol. Biol., 8,

25–36.
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