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Abstract

Summary: Analyzing the functional profile of a microbial community from unannotated shotgun

sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable

applications in biological research because it identifies the abundances of the functional genes of

the organisms present in the original sample, answering the question what they can do. Currently,

available tools do not scale well with increasing data volumes, which is important because both

the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we

introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile hom-

ology-based approach using a reduced reference database to report the subsystems present in

metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with over 70 real

metagenomes, the results showing that it accurately predicts the subsystems present in the pro-

filed microbial communities, and is up to 1000 times faster than other tools.

Availability and implementation: SUPER-FOCUS was implemented in Python, and its source code

and the tool website are freely available at https://edwards.sdsu.edu/SUPERFOCUS.

Contact: redwards@mail.sdsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prokaryotes and the viruses that infect them are the most

abundant organisms on earth (Whitman et al., 1998), and it is im-

portant to understand both who they are and what they are

doing. In many environments, the majority of the microbes can-

not be cultured by using standard laboratory techniques,

and metagenomics is the preferred way to study them as a

whole community (Handelsman, 2004). Next-generation DNA

sequencing (NGS) technologies have sped up the sequencing

process, reduced the cost, increased the sampling resolution and

opened new horizons in the biological sciences (Zhang et al.,

2011).

Understanding microbial communities is important in many

areas of biology. For example, metagenomes can distinguish taxo-

nomic and functional signatures of microbes associated with

humans (Consortium, 2012), sponges (Trindade-Silva et al., 2012,

2013), red seaweed (Oliveira et al., 2012) and diseased and healthy

states of corals (Garcia et al., 2013).
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Functional annotation of metagenomic reads normally requires

the alignment of sequences to a large database of annotated se-

quences to identify homologs (Mendoza et al., 2015). There are

many databases for annotations at the functional system or pathway

level, including the SEED (Overbeek et al., 2005) which contains

subsystems (sets of protein families with a similar function), and the

large metabolic pathway databases KEGG (Kanehisa and Goto,

2000) and MetaCyc (Caspi et al., 2010).

Many of the tools for functional profiling are slow (Lindgreen

et al., 2015), suggesting that there is an opportunity for improve-

ments of these tools. Currently, available tools generally use either

homology, i.e. by aligning the metagenomic sequencing reads

against an annotated reference database, or use exact matches

(k-mers) to link metagenomic sequencing reads to the annotated se-

quences. Homology-based metagenome annotation tools programs

are still frequently based on pre-NGS algorithms such as BLAST

(Altschul et al., 1997) or BLAT (Kent, 2002) to identify the best hit

in a large database, although new homology search algorithms such

RAPSearch2 (Zhao et al., 2012) and DIAMOND (Buchfink et al.,

2015) have recently been developed to reduce the run time. MG-

RAST (Meyer et al., 2008) and MEGAN 5 (Mitra et al., 2011) both

align sequences to a reference database to profile the metagenomic

sample. MG-RAST first predicts the open reading frames (ORFs) on

the metagenomic sequence using FragGeneScan (Rho et al., 2010)

and then aligns the translated amino acid sequences to the M5NR

database via BLAT. MEGAN accepts as input the tabular results

files created from programs such as blastx/blastp, DIAMOND, or

RAPSearch2 to the NR database, and creates taxonomic and/or

functional profiles based on the search output.

Exact match or k-mer based approaches use oligonucleotides to

identify the hits in a metagenome. For example, real time metage-

nomics (RTMg) (Edwards et al., 2012) identifies all words of length

k (where k is typically between 7 and 12 amino acids) that are a

unique signature for a set of functionally related proteins, and uses

them to profile the functions present in the metagenomic sample.

This approach has also been successfully applied to assign taxo-

nomic labels to metagenomic sequences using a length of k of 31 nt

(Wood and Salzberg, 2014; Ounit et al., 2015).

We developed a novel approach, named SUPER-FOCUS, which

classifies each sequence in the metagenome into a subsystem.

SUPER-FOCUS aligns all the input data against a reduced database

with contains only the subsystems present in the organisms in that

metagenome. The speed up derives from three improvements com-

pared with the standard metagenome annotation pipelines. First,

the SEED database was clustered using CD-HIT (Huang et al.,

2010) using a similar approach as previously discussed and applied

to the Genbank NR database (Li et al., 2012); second, the metage-

nomic query sequences are profiled using FOCUS (Silva et al.,

2014), an ultra-fast tool that identifies the organisms in the meta-

genome; and finally, comparisons are performed using

RAPSearch2 which is �2–3 times faster than BLAT and 100 times

faster than blastx, but has no reduction in sensitivity or specificity

when compared with BLAST (Berendzen et al., 2012). We compare

the performance of SUPER-FOCUS to RTMg, MEGAN and MG-

RAST using different reduced databases and over 70 metagenomic

datasets of different sizes and from different environments. The re-

sults shows that SUPER-FOCUS speeds up the process of sequence

functional annotation 37, 60 and 1000 times faster than RTMg,

MEGAN and MG-RAST, respectively. We apply SUPER-FOCUS

to a novel dataset from a coral reef environment and show that the

taxonomy is conserved across islands while functions adapt to

local conditions.

2 Methods

The SUPER-FOCUS workflow consists of one pre-processing step

(step 0) and five processing computational stages which are repre-

sented in Fig. 1 and described below:

(0) Create reduced databases of subsystems using CD-HIT with

different parameters.

(1) Identify the genera present in the metagenomic sample using

FOCUS.

(2) Select subsystems present in the predicted organisms to create a

new reduced database.

(3) Align input data against the reduced database using

RAPSearch2 (default aligner), DIAMOND, or blastx.

(4) Parse the alignment output and keep best-hit(s) with, e.g. max-

imum E-value 1e�5, minimum 60% identity, and minimum

alignment length 15 amino acids (these are all default values

that can be changed). If more than one best hit is found per

query sequence, the program keeps all the subsystems for all

the best hits.

(5) Write functional annotations for subsystems levels 1–3.

2.1 Reduced reference dataset
The SEED database was developed by members of the Fellowship

for Interpretation of Genomes (FIG) and Argonne National

Laboratory starting in 2004 (Overbeek et al., 2004) with the goal of

clustering sets of proteins which implement a specific biological pro-

cess or structural complex into subsystems.

The database is composed of subsystems structured into three

levels, the first level is the most general class and the third level is

the more specific class, and one functional role (Fig. 2 for an ex-

ample of one subsystem).

SUPER-FOCUS requires a group of reference sequences to iden-

tify the subsystems present in a metagenome. The proteins anno-

tated into 1290 subsystems (Supplementary Table S1) were

downloaded from the SEED servers (Aziz et al., 2012) using the

SEED API (Disz et al., 2010) on December 12, 2014 and all identical

proteins were removed. Next, the proteins within each subsystem

were clustered separately using CD-HIT in order to cluster exact

and nearly identical protein sequences (the clustering was repeated

four times with sequence identity cut-off: 100, 98, 95 and 90%)

reducing the total reference dataset, respectively, from 3.1 to 3 GB

(100% identity clustering; �6% sequence reduction), 2.1 GB (98%

Fig. 1. Workflow of the SUPER-FOCUS program
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identity clustering; �30% sequence reduction), 1.8 GB (95% iden-

tity clustering; �40% sequence reduction) and 1.6 GB (90% identity

clustering; �52% sequence reduction).

SUPER-FOCUS databases were named by the identity used in

their clustering e.g: DB_100 used 100% sequence identity, DB_98

(default database) used 98% identity, DB_95 used 95% identity,

and DB_90 used to 90% identity in clustering. Due to the reduction

of the reference database into non-redundant clusters, a slight loss

of functional resolution is lost. We recommend that the database

choice should be made depending on how specific the functional

profiling is needed. For example, if the function level is needed,

DB_100 is the recommended. Otherwise, the other databases can be

used with a little loss of sensitivity and high precision as shown

later.

2.2 Aligner choice
RAPSearch2 is the default aligner for SUPER-FOCUS because it has

a reduced memory requirement of �2 GB RAM when running in

single threaded mode and around 3.5 GB when running in four-

thread mode.

DIAMOND (Buchfink et al., 2015) has a large memory require-

ment of �100 GB RAM for these datasets. Any aligner that provides

a tabular output can be easily integrated to the SUPER-FOCUS pipe-

line; e.g. BLAST, or DIAMOND which is �20 times faster than

RAPSearch2 for large datasets but slower than blastx for small data-

sets. RAPSearch2 and DIAMOND have a fast version, which is less

sensitive, but 900 and 20 000 times faster than blastx, respectively.

SUPER-FOCUS was tested with both the fast and sensitive settings

for these algorithms.

2.3 The presence or absence of subsystems in

complete genomes
We downloaded all the encoded proteins in complete bacterial and

archael genomes, including any integrated phophages or plasmids,

from the Genbank database on March 12, 2015 (ftp://ftp.ncbi.nih.

gov/genomes/Bacteria). To identify the presence of SEED subsystems

within these genomes, we aligned the proteins to the complete SEED

database using blastp 2.2.25þ targeting the 250 top hits. Only the

best hit(s), i.e. those with the lowest E-value, were kept and used to

stipulate which subsystems were present in each genome (maximum

E-value: 1e-5, minimum identity: 60%, minimum alignment length:

15 amino acids, and Supplementary Fig. S1 shows that the used hits

had 361.67 6 248.14 of alignment length, which suggests that

ORF’s were correctly assigned into a subsystem.

The presence of subsystems in each genus was determined via the

assignments of each subsystem at the species level (Supplementary

Table S2), and this presence/absence matrix is used to further reduce

the database in step 2 of SUPER-FOCUS pipeline.

We also annotated the same genomes using RAST (Aziz et al.,

2008), and on Supplementary Material we show the comparison be-

tween the presence/absence matrices from RAST and blastp generate

a similar results.

2.4 Testing set
In order to evaluate SUPER-FOCUS performance, both public and

private real metagenomic datasets were selected as test cases:

Public data: Fifty datasets (2.2 GB) from six different human body

sites sequenced by the Human Microbiome Project (HMP)

(Consortium, 2012) were selected as a test case (Supplementary

Table S3) and three marine viral metagenomes (total of �500 MB)

from the Moore Marine Phage/Virus Metagenomes project

(CAM_PROJ_BroadPhage) (Supplementary Table S4) were ana-

lyzed using SUPER-FOCUS. Human contamination was removed

from all the testing sets using DeconSeq (Schmieder and Edwards,

2011).

Private data:

Study sites: One big data metagenome was generated from a simu-

lated colon bioreactor, totaling 7.7 GB. Twenty coral metagenomics

samples were collected from February 2010 to September 2013

across the Central and Southern Pacific Ocean as part of the

National Oceanic and Atmospheric Administration (NOAA) Coral

Reef Ecosystem Division (CRED) monitoring program

(Supplementary Table S5).

Sample collection: Seawater was collected on coral reefs across the

Pacific Oceans as described in Haas et al. (2014). Briefly, 2.2 l of

water was collected in diver-deployed Niskin bottles at �10 m depth

within 30 cm of the benthos at each site. Sample water was then

flushed through a 0.22 lm Sterivex filter. After filtration, excess

water was flushed out of the Sterivex using a clean 10 ml syringe

filled with air. Sterivexes were then labeled and placed back into the

original package, sealed with tape and stored at �20�C until

extraction.

DNA extraction and sequencing: Total DNA was extracted from a

0.22 lm Sterivex filter using the Nucleospin Tissue Kit (Macherey-

Nagel, Dueren, Germany) following manufacturer’s protocol.

Briefly, filters were thawed and excess water was removed by flush-

ing the water out with 10 ml Lure-Lok syringe. One end of the filters

were sealed with Parafilm and 410 ll of T1 lysis buffer with 20 mg/

ml Proteinase K was added into each filter from the other end. The

end of the filters were sealed and placed into a 55�C oven on a rotat-

ing spit overnight. After incubation, 400 ll of Buffer B3 was added

to each filter and placed back in the rotating oven at 70�C for

30 min. The lysate was retrieved from the filter using a 3 ml Lure-

Lok syringe and placed into a new 1.5 ml microcentrifuge tube. Four

hundred twenty micrometer liters of 100% ethanol was added into

each tube containing the lysate and DNA was recovered described in

the manufacture’s protocol. DNA concentration was measured

using the Qubit High Sensitivity dsDNA kit (Life Technologies, NY)

and DNA purity was evaluated using NanoDrop (Thermo

Scientific). The Nextera XT DNA Library Prep Kit (Illumina, CA)

was used for sequence library preparation and the manufactures

protocol was followed. In short, samples were diluted to 0.2 ng/ml

Fig. 2. Representation of a subsystem structure (Levels 1–3 classifications

and Function)
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and a total of 1 ng of DNA from each sample was processed. DNA

was amplified via a limited-cycle PCR program, AMPure XP beads

(Beckman Coulter, CA) were used for purification and for size selec-

tion (> 500 bp) of the DNA. 11 samples were tested using the 2100

Bioanalyzer (Agilent Technologies, CA) to ensure size selection was

successful. The size-selected samples were then sequenced on the

Illumina MiSeq platform (Illumina, CA) using the MiSeq Reagent

Kit v3.

2.5 Sensitivity, precision and speed of SUPER-FOCUS

analysis
To benchmark our annotation pipeline with real metagenomes, we

had to define a true annotation of the metagenomic sequencing

reads. Because blastx searches the DNA sequences in protein space,

we consider it to be the most sensitive search tool, and we defined

the true annotation of a metagenomic sequencing read as the best

hit(s) of a blastx search of the read against the complete database

(DB_100), and if there is more than one best hit with an equally low

E-value, all are used. Thus, for a given functional level (e.g.

Subsystem level 1, 2 or 3), sensitivity is defined as the ratio between

the number of correct assignments by SUPER-FOCUS and the total

number of sequences annotated by a blastx search against DB_100

(‘true answer’), and precision is defined as the ratio between the

number of correct assignments by SUPER-FOCUS and the total

number of classified sequences by SUPER-FOCUS.

The speed of SUPER-FOCUS analysis, measured in thousands of

sequences analyzed per minute, was estimated by timing the run

time in seconds for each metagenome using the python library time,

and dividing the time by the total number of sequences in the meta-

genome; it estimates the number of seconds to align each sequence

in the metagenome against the target database (e.g. SEED or NR).

3 Results and discussion

3.1 Validation of clustered database and

SUPER-FOCUS evaluation
Prior to testing SUPER-FOCUS we independently validated our

database construction and size reduction. The HMP and viromes

testing set metagenomes were aligned against the SUPER-FOCUS

database DB_100 using blastx, as described in the methods, and

each query sequence was assigned to a subsystem using the SUPER-

FOCUS best-hit method. Next, DB_100 blastx’s assignments were

assumed to be the right answer, and same testing sets were aligned

against DB_100, DB_98, DB_95 and DB_90, but now using

RAPSearch2 as the aligner with the same parameters previously

used with blastx. RAPSearch2 was run with 24 threads in the sensi-

tive and fast modes using the SUPER-FOCUS workflow.

RAPSearch2 without the SUPER-FOCUS workflow using database

DB_100 represents how a regular user would profile a metagenomic

dataset only using the complete SEED and a fast aligner. This ana-

lysis was added to show that part of the loss of sensitivity and preci-

sion from SUPER-FOCUS profiling comes from RAPSearch2.

For the 50 HMP metagenomes with short reads, we measured

both the sensitivity (Fig. 3a for sensitivity using subsystem level 1

classification, Supplementary Fig. S2 for level 2 and 3 classifications)

and precision (Fig. 3b) for precision using subsystem level 1 classifi-

cations, Supplementary Fig. S3 for level 2 and 3 classifications.

We used blastx as our notion of ‘truth’ as it is the most widely

used algorithm in metagenomics analysis. For the 50 HMP metage-

nomes the average processing time (sequences/minute) is compared

with the sensitivity at each of the three subsystem levels. The more

sensitive the profile, the longer it is going to take, and the more

broader the categories (subsystems level 1), the more sensitive the re-

sults are.

Figure 3 also shows that the SUPER-FOCUS approach was

slightly faster, but less sensitive when compared with RAPSearch2

without the SUPER-FOCUS workflow alignments; it was faster be-

cause on average 88.53 6 5% of the 1290 subsystems in the SEED

database were used to profile all the metagenomes in the testing set

(Fig. 4) in step 2 of the SUPER-FOCUS pipeline, and the misclassi-

fied sequences explain the loss of sensitivity as described later.

Overall, there was <1% loss of sensitivity (Supplementary Fig.

S4a) and precision (Supplementary Fig. S4b) between all the levels,

which shows the efficiency of using the clustered database presented

in this paper and the SUPER-FOCUS approach compared with

blastx searches.

3.2 Understanding SUPER-FOCUS misclassifications
In order to understand the SUPER-FOCUS misclassifications when

compared with RAPSearch2 without the SUPER-FOCUS workflow,

two confusion matrices were generated to compare predicted and

real sequence annotations: Figure 5a presents the RAPSearch2-

Sensitive results using the DB_100, and the only significant loss of

sensitivity was 6.45% of sequences that were supposed to be classi-

fied into the ‘Plant cell walls and outer surfaces’ subsystems but

were not classified; this loss of sensitivity is explained because

RAPSearch2 is based on a reduced amino acid alphabet of 10

Fig. 3. Percent classification sensitivity (A) and precision (B) of level 1 subsys-

tems and speed of RAPSearch2 and SUPER-FOCUS using different databases

and parameter modes. This analysis was based on a comparison of 50 HMP

metagenomes, where blastx assignments using DB_100 were considered to

be the true answer

Fig. 4. Percentage of level 3 subsystems present in all the testing set metage-

nomes predicted by SUPER-FOCUS
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symbols, which makes the tools less sensitive, while blastx uses a

complete amino acid alphabet. Figure 5b shows the results for

SUPER-FOCUS-Sensitive using DB_100, and now 67.74% of the se-

quences that were supposed to be classified into the ‘Plant cell walls

and outer surfaces’ subsystems and 6.03% of the sequences that

were supposed to be classified into the ‘Photosynthesis’ subsystems

were not classified.

To investigate the SUPER-FOCUS misclassifications, those se-

quences were aligned against the NR-database using blastx and an

E-value cutoff of 1 e�5. The best-hit was selected for each sequence,

and the taxonomic classification for each hit was recovered using

Biopython (Cock et al., 2009).

The results show that �25% of the wrong assignments were

from the Eukaryota and �1.3% of the wrong assignments were

derived from viruses. The rest of the misclassified sequences were

associated with Bacteria. Ninety-nine percentage of those were not

identified by FOCUS and 78% were not identified by MetaPhlAn

because neither FOCUS nor MetaPhlAn include those bacteria in

their databases. Of the 22% that were identified by MetaPhlAn

(used to analyzed the data in the HMP paper) (Segata et al., 2012),

just over half of those (57%) had <2% relative abundance, suggest-

ing that both FOCUS and MetaPhlAn are missing the rare species in

the environment (Supplementary Table S6).

SUPER-FOCUS uses FOCUS in its pipeline, a tool that was de-

veloped to taxonomically profile microbial data. The FOCUS data-

base only contains bacterial and archaeal genomes, which explains

the misclassification of metagenomic reads from other microbial

clades. We showed that the real metagenomes used herein contained

viral and eukaryotic sequences, even after the sequences were

filtered. For example, while human contamination from the HMP

data was already removed using BMTagger (Rotmistrovsky and

Agarwala, 2011), we were still able to identify human reads with

the DeconSeq tool (Schmieder and Edwards, 2011). These contam-

inations affect biological conclusions (Weiss et al., 2014) and lead to

increased computing time.

SUPER-FOCUS was designed to only classify microbial data.

The SUPER-FOCUS pipeline guarantees a more accurate microbial

functional analysis and does not classify eukaryotic or viral se-

quences. Thus, if hits to the Eukaryotic and Viral Kingdoms are

ignored, the SUPER-FOCUS approach would present a better profile

than the one present in Fig. 3a as shown in Fig. 6 for sensitivity at

level 1, Supplementary Fig. S5a for level 2 and 4 (b) for level 3.

3.3 Comparison of SUPER-FOCUS with other tools
SUPER-FOCUS was compared with RTMg, MEGAN and MG-

RAST, and all the four tools were tested using default parameters.

MEGAN 5.10 and SUPER-FOCUS were run using default param-

eters and their default reference database, either online (MG-RAST

and RTMg) or using one core on a server with 24 processors � 6

cores Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz and 189 GB RAM.

MEGAN uses the NR database, and it was downloaded on January

22, 2015. MG-RAST uses the M5NR as database, and its last up-

date is not known because MG-RAST does not provide that infor-

mation. RTMg is a web server which uses the SEED as database and

was updated on November 8, 2013.

For the three viromes that were sequenced using 454 technology

and thus had longer reads, SUPER-FOCUS sensitivity and precision

were evaluated against the annotations based on the blastx searches

against DB_100 as the true assignments, and its runtime was com-

pared with MEGAN, MG-RAST and RTMg. Here, RAPSearch2’s

performance was tested using different numbers of threads (24, 18,

12 and 6) (Supplementary Fig. S6), blastx was also used to align the

sequences because RAPSearch2 is known to be less sensitive for 454

data (Buchfink et al., 2015), and because DIAMOND was designed

for large datasets, and it is slower than blastx for small datasets.

RAPSearch2 is less sensitive for long sequences as shown in Fig. 7a.

SUPER-FOCUS had a high precision, using all the databases, of

Fig. 5. Confusion matrix displaying the percentage of correct assignments in

each level 1 subsystem for the 50 HMP metagenomes. (a) Shows the

RAPSearch2 assignments in the sensitive mode to DB_100. (b) Shows the

SUPER-FOCUS assignments in the sensitive mode to DB_100

Fig. 6. Classification sensitivity using level 1 classifications and speed com-

parison of 50 HMP metagenomes using RAPSearch2 and SUPER-FOCUS

using different databases and modes, but removing Eurkaryota and viral as-

signments. blastx assignments using DB_100 were considered to be the true

answer
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�98.4 6 1% using blastx with level 1 classifications (Fig. 7b).

Subsystems sensitivity and precision measurements for level 2 and 3

subsystem classifications are shown, respectively, in Supplementary

Figs S7 and S8. BLAST is slow, thus the blastx results for Fig. 7 was

generated in a cluster at the San Diego State University facilities, and

the run time was approximated based on the knowledge that

RAPSearch2 is �100 times faster than blastx.

In the timing tests, SUPER-FOCUS had the fastest profiling using

RAPSearch2 in its fast mode. RTMg was faster than RAPSearch2

sensitive (Fig. 8). MEGAN can be enhanced by using RAPSearch2,

and the underlying framework hinders MG-RAST.

Interestingly, despite the absence of phages in the FOCUS data-

base, SUPER-FOCUS was able to predict correctly the subsystems in

the viromes. We hypothesize that FOCUS predicted the microbial

host for the phages, and from those genera that carry the subsystems

present in the viral metagenomes. Phages are very diverse which

means that the subsystems associated with phages (‘Phages,

Prophages, Transposable elements, Plasmids’, ‘Virulence’ and

‘Virulence, Disease and Defense’), did not cluster well in the

SUPER-FOCUS database creation. This lack of clustering explains

why the sensitivity across different databases does not change much

in Fig. 7.

For the one big data metagenome analyzed here, the runtime of

SUPER-FOCUS was only compared with MEGAN, MG-RAST and

RTMg, and due to the large number of sequences (30 917 457

reads), DIAMOND was used as default aligner for the SUPER-

FOCUS and MEGAN tools. As shown in Fig. 9, SUPER-FOCUS

was the fastest tool followed by RTMg, MEGAN, and then MG-

RAST. It is important to point out that SUPER-FOCUS (and

MEGAN) used 24 threads, and even if the program had been set to

use less threads, it would be still expected to be faster than RTMg

because as shown in Fig. 8 SUPER-FOCUS is �4.4 (most sensitive)

and 37.7 (fastest) times faster than RTMg. The SUPER-FOCUS

profiling was compared with MEGAN, RTMg and MG-RAST as

shown in Fig. 10, and the results show that the three tools are com-

parable to each other, except to MG-RAST which apparently over

predicted hits to the ‘Clustering-based subsystems’ and RTMg which

did not report any hits this subsystem as they are ignored.

3.4 Coral metagenomes functional profiling
Twenty coral metagenomes from four sites were also analysed to

test the robustness of using SUPER-FOCUS in the marine environ-

ment. First, the coral sequences were profiled using FOCUS, which

is part of SUPER-FOCUS, to understand the taxonomic profile

among the sites; and second, the same sequences were classified into

subsystems using SUPER-FOCUS with RAPSearch2 and DB_98 as

database which we have already shown to be sensitive and precise.

In addition to RAPSearch2, blastx was also added to the analysis be-

cause the sequenced reads average �218 6 64.4 bp and RAPSearch2

is known to be less sensitive for reads longer than 100 bp (Buchfink

Fig. 7. Classification sensitivity (a) and precision (b) percent using level 1 and

speed comparison of three viromes using RAPSearch2 and SUPER-FOCUS

using different databases and modes. blastx assignments using DB_100 were

considered to be the true answer

Fig. 8. Run time comparison for the three marine viromes using SUPER-

FOCUS, RTMg, MEGAN and MG-RAST

Fig. 9. Run time comparison for the one big data metagenome using SUPER-

FOCUS, RTMg, MEGAN and MG-RAST
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et al., 2015). The difference in sensitivity for the long reads coral

data between blastx and RAPSearch2 is shown in Fig. 11a. The me-

dian RAPSearch2 sensitivity was �83%, although it was still precise

(�99%; Fig. 11b); in comparison, the median blastx sensitivity was

(�99.5%) and precision was (�99.5%) as shown in Fig. 9c and d.

For the taxonomic profiling, Fig. 12a was generated using SciPy

(Jones et al., 2001) and matplotlib (Hunter, 2007) (both open source

python programming language libraries), and it shows the

hierarchical clustering based on the pairwise Euclidean distances of

the relative genus abundance of the each coral metagenome. The

clustering shows that the samples from the same site cluster to-

gether, which suggest they have a similar microbial community.

For the functional profiling, the same hierarchical clustering ap-

proach, using the distances between the relative abundances of the

level 1, 2 and 3 subsystem classification were used. Figure 12b also

shows that samples from the same sites had similar subsystem level

3 profiles (Supplementary Fig. S9 for levels 1 and 2). Both figures

show that there is a microbial core that is preserved on some of the

reefs; however, the nature of that core differs between taxonomy

and function, as we have shown before (Dinsdale et al., 2008). This

trend suggests that the organisms are quite stable at different sites

while the functions change to allow adaptation to local

environments.

3.5 Final considerations
FOCUS is integrated with a SUPER-FOCUS pipeline which permits

the tool to also report the taxonomic profile for a given metage-

nomic dataset. Both functional and taxonomic profiles are also pro-

vided by MEGAN and MG-RAST; RTMg only reports the

functional assignments. SUPER-FOCUS provides three advances in

the functional profiling compared with other tools: (i) It uses a fast

aligner; (ii) it uses clustered databases in order to obtain a fast pro-

file with little loss of sensitivity and (iii) focuses on the microbes pre-

sent in the input data to attain a more microbial profile. As a default

Fig. 10. Comparison of level 1 subsystems profile of one big data metage-

nome using SUPER-FOCUS, RTMg, MEGAN, MG-RAST and blastx that are

considered to be the true answer

Fig. 11. Box plots displaying the percent sensitivity (A and C) and precision (B

and D) of RAPSearch2 (A and B), blastx (C and D) annotation of the 20 coral

metagenomes. RAPsearch2 was tested in the fast and sensitive modes

Fig. 12. Hierarchical clustering of the taxonomic (A) and functional (B) annota-

tions of 20 coral metagenomes. Genus level taxonomic annotation was per-

formed using FOCUS. Functional annotation of level 3 subsystems was

performed using SUPER-FOCUS using blastx and DB_98
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the tool, uses three advances; however, the user can select any com-

bination of options.

4 Conclusions

Here, we present SUPER-FOCUS, an agile solution to identify the

subsystems present in metagenomic samples that first determines the

taxonomic composition of the entire metagenome by using FOCUS,

and uses this knowledge to create, on the fly, a reduced database

only containing the subsystems present in the organisms found. This

makes SUPER-FOCUS a faster and still accurate tool to profile the

functional subsystems in metagenomes. SUPER-FOCUS reports very

similar results to currently available tools, but does so faster and

using less memory.
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