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Abstract

Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific

discoveries.

Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary

teams for large-scale image-based studies. It uses web development methodologies and machine

learning in order to readily organize, explore, share and analyze (semantically and quantitatively)

multi-gigapixel imaging data over the internet. We illustrate how it has been used in several bio-

medical applications.

Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an

open-source license from http://github.com/cytomine/. A documentation wiki (http://doc.cytomine.

be) and a demo server (http://demo.cytomine.be) are also available.

Contact: info@cytomine.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In various scientific domains (incl. biology, biomedicine, astronomy,

botany, geology, paleobiology, marine research, aerobiology, cli-

matology), projects leading to terabytes of multi-gigapixel images

become increasingly common (The data deluge, 2012) e.g. biomed-

ical research studies often rely on whole-slide virtual microscopy or

automated volume electron microscopy. In these fields, significant

advances could be made by multidisciplinary collaboration involv-

ing distributed groups of life scientists and computer scientists ex-

ploiting large-scale image networks (Moody et al., 2013; Poldrack,

2014), or eventually by enlisting the help of members of the general

public in large imaging surveys (Clery, 2011) through interactive

games (e.g. EyeWire (http://eyewire.org/) and Brainflight (http://

brainflight.org/) projects). For example, researchers in experimental

histology are willing to precisely annotate images and need to con-

sult distant experts in pathology or molecular biology. Developers

of image processing algorithms are willing to collaborate with ma-

chine learning specialists to build complementary image analysis

workflows. Furthermore, all these individuals need to actively col-

laborate to gain new insights, e.g. computer scientists require realis-

tic ground truth and proofreadings (Ground-truth data cannot do it

alone, 2011) provided by life scientists to design and refine their

analysis methods. Vice versa, life scientists increasingly rely on algo-

rithms or crowdsourced outputs in combination with proofreading

tools to enable efficient analysis of very large image sets.

Bioimage informatics aims at developing software to ease the

analysis of large-scale biomaging data (Myers, 2012). In recent

years, several software have been developed including CellProfiler

(Carpenter et al., 2006), CATMAID (Saalfeld et al., 2009), BisQue

(Kvilekval et al., 2010), ilastik (Sommer et al., 2011), Icy (de

Chaumont et al., 2012), Fiji (Schindelin et al., 2012), OMERO

(Allan et al., 2012) and BigDataViewer (Pietzsch et al., 2015).
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Applications and extensions of these software packages have been

proposed in various research fields (e.g. in the context of Drosophila

(Jug et al., 2014) and Zebrafish (Mikut et al., 2013) research, or in

plant sciences (Lobet et al., 2013)) to address rather specific biolo-

gical questions (e.g. to map neuronal circuitry in Schneider-Mizell

et al., 2015).

In this work, we present Cytomine, a novel open-source, rich

web environment to enable highly collaborative analysis of multi-

gigapixel imaging data. This tool has been designed with the follow-

ing objectives in mind:

• provide remote and collaborative principles,
• rely on data models that allow to easily organize and semantic-

ally annotate imaging datasets in a standardized way,
• efficiently support high-resolution multi-gigapixel images,
• provide mechanisms to readily proofread (Ground-truth data

cannot do it alone, 2011) and share image quantifications pro-

duced by machine learning-based image recognition algorithms

(de Souza, 2013; Murphy, 2011).

While some of these features are available in existing tools, none

of these tools provide all these features simultaneously. By empha-

sizing collaborative principles, our aim with Cytomine is to acceler-

ate scientific progress and to significantly promote image data

accessibility and reusability (The data deluge, 2012; Moody et al.,

2013; Poldrack, 2014). We want to break common practices in this

domain where imaging datasets, quantification results and associ-

ated knowledge are still often stored and analyzed within the re-

stricted circle of a specific laboratory. To achieve this goal, the

Cytomine platform permits active collaboration between distributed

groups of life scientists, computer scientists and citizen scientists. It

allows seamless online sharing and reviewing of semantic and

quantitative information associated with large images, either pro-

duced manually or automatically using machine learning algorithms,

as schematically illustrated in Figure 1.

The paper is structured as follows. In Section 2 we describe the

main design principles and functionalities of Cytomine. In Section 3,

we briefly present use cases initiated by our collaborators to help

readers to determine how they can use our software to address their

own research questions. We then discuss the concepts of extensibil-

ity of the platform in Section 4, and finally, we conclude.

2 System and methods

To allow image-based collaborative studies and meet software effi-

ciency and usability criteria (Software with impact, 2014; Carpenter

et al., 2012; Prins et al., 2015), the software is decomposed into four

main components (Supplementary Note 1) communicating through

web mechanisms (through a RESTful API): Cytomine core

(Cytomine-Core), Cytomine Image Management System (Cytomine-

IMS), Cytomine web user interface (Cytomine-WebUI) and Cytomine

analysis modules (Cytomine-DataMining), designed as follows.

2.1 Cytomine-core
Cytomine-Core relies on recent web and database software develop-

ment technologies. Its underlying data models (Supplementary Note

2) allow to create and store projects. Each project can be accessed

by multiple users through authentication. A project can contain

multi-gigapixel image sequences and a user-defined ontology, i.e. a

structured list of domain-specific semantic terms. Each image in-

stance can be annotated by users or software using annotation ob-

jects of various shapes for regions of interest (e.g. a cell or a tissue

subregion) and labeled with one or multiple semantic terms from the

Fig. 1. Overview of multidisciplinary collaborative principles illustrated for tumor segmentation in H&E lung cancer whole tissue slides: (a) Images are uploaded

using Cytomine-WebUI or remote clients. (b) Images and related data are stored by Cytomine-Core and Cytomine-Image Management System. (c) Once up-

loaded, multi-gigapixel images are de facto available to other distributed users according to access rights and referenced by URLs. (d) Remote, multidisciplinary

individuals are collaboratively and semantically annotating regions of interest in images and each annotation is referenced by its URL. (e) Expert annotations can

be filtered and sets of annotations can be displayed or retrieved through the API. (f) Distributed algorithms can exploit these annotations, here a segmentation

recognition model is built by supervised learning based on expert training examples. (g) An algorithm or recognition model can be applied remotely on new

multi-gigapixel images for automatic annotation. (h) Experts review other user and automatic annotations by using Cytomine-WebUI proofreading tools.

(i) Reviewed annotations can eventually be reused to refine and re-apply the recognition model. (j) Once image annotations are validated by an expert, final quan-

tification results of the ‘reviewed layer’ are exported in standard formats
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ontology (e.g. a specific cell type or tissue structure). In addition,

metadata (key-value properties, associated files and rich descrip-

tions) can be associated to any project, image and annotation. Such

data can be created remotely either by human experts (through

Cytomine-WebUI) or automatically (by our analysis modules or any

third-party software implementing basic web communication mech-

anisms). Because these data are identified by URLs they are de facto

shared with any authenticated user. Also, as they are represented in

standard formats (namely JSON, a lightweight data-interchange for-

mat), they can be automatically parsed and generated by registered

external applications.

2.2 Cytomine-IMS
Cytomine-IMS backend server provides web services that encapsu-

late a collection of distributed, specialized image server instances. It

is used to upload 5D image sequences (x,y,z,c,t planes) and to dy-

namically deliver original image areas and annotation masks over

the internet – at any pyramid resolution. It supports various stand-

ards and specific microscopy image formats (including most of

whole-slide scanner formats) either by directly accessing their native

formats, or by seamlessl conversion to a pyramidal format during

the upload phase (see Supplementary Note 1 for a list of supported

formats).

2.3 Cytomine-WebUI
Cytomine-WebUI is a customizable and responsive rich internet ap-

plication (Fig. 2), accessible through regular web browsers and mo-

bile devices. It allows to create, organize, visualize and edit all data.

It includes a zoomable, tile-based viewer for multi-gigapixel images

with the visualization of overlaid (human or computer-generated)

annotation layers and their properties. Furthermore, an ontology

editor, several modules to derive annotation statistics and visualize

annotation galleries, a textual search engine and proofreading tools

for expert reviewing of annotation objects are part of this user inter-

face. In addition, we have implemented functionalities to allow vari-

ous forms of collaborative works. One of them is the tracking of all

user activities to e.g. allow multiple users to follow remotely another

user’s observation paths and actions. Conversely, a blinded mode

can be activated to hide image and user information to allow inde-

pendent studies and reduce bias when analyzing imaging data. An

additional module (Cytomine-IRIS, the interobserver reliability

study module) also allows independent ground-truth construction

and inter-observer annotation statistics e.g. to identify cell type clas-

sification disagreements among experts.

2.4 Cytomine-DataMining
Cytomine-DataMining analysis modules currently include variants of

machine learning based image recognition algorithms (Marée et al.,

2013a) that can be run on remote servers (Supplementary Note 3).

This property facilitates large-scale analysis on distributed cluster sys-

tems where expensive computations can be outsourced. We provide

an unsupervised, incremental, content-based image retrieval method

that searches on-the-fly for visually similar annotations in the data-

base and displays them in Cytomine-WebUI every time a user draws

an annotation (see examples in Supplementary Note 4.2). Variants of

supervised image recognition algorithms are also provided for object

classification, semantic segmentation and landmark detection (see ex-

amples in Supplementary Note 4.2). Through web communication

mechanisms, these analysis modules can be launched from

Cytomine-WebUI. These modules typically retrieve filtered sets of

labeled annotation objects through the API and build computational

image recognition models. These models can be applied at any pyra-

mid level of a gigapixel image in order to analyze its content at differ-

ent resolutions and automatically create novel annotation objects

(e.g. cell or tumor geometries and their semantic terms for cell sorting

and tumor quantification, or coordinates of points corresponding to

landmarks for morphological measurements). Despite progress in

machine learning, it often remains necessary for experts to proofread

automatically generated annotations. For this purpose, we also pro-

vide Web UIs to revise computer-generated annotations (e.g. edit

their shape or spatial localization, modify their ontology term, . . . ).

Notably, these editing tools are independent of our image recognition

algorithms and can be used to remotely review annotation objects

created by other software (see Supplementary Note 5.3 for details on

extensibility) or scientists. Reviewed annotations are stored as novel

entities in the database so they can be disseminated or used later to

refine recognition models.

3 Applications

While our first developments were primarily motivated by the ana-

lysis of brightfield cytology and histology images (digital slides) in

lung cancer research (Marée et al., 2013b), we have significantly

increased our software’s versatility and improved its extensibility.

Cytomine has now been used on various bio(medical) imaging data-

sets that involved various types of images and experts in different

collaborative operating modes to perform various quantification

tasks. In particular, we briefly present here several use cases to help

readers to determine how they can use our software to address their

own research questions (see illustrative examples in Fig. 3 and

Supplementary Note 5 for a user guide). These applications were re-

grouped into 4 categories corresponding to different image recogni-

tion tasks.

3.1 Tissue area quantification
In these use cases, scientists aims at quantifying the size (area) of tis-

sue regions (e.g. the ratio of tumor islets with respect to whole tissue

sections). This type of task implies to delineate the whole tissue sec-

tion as well as the specific regions of interest within the tissue, either

manually or semi-automatically (see Supplementary note 5.2.4.1 for

a step-by-step guide using automatic recognition algorithms on toy

data).

Following these principles, Cytomine enabled semi-automatic

tumor area assessment in hundreds of whole lung Hematoxylin–

Eosin (H&E) stained digital slides in mice inflammation and cancer

research (Marée et al., 2014) (Fig. 3a). Experts (pneumologists and

biomedical researchers) first used Cytomine-WebUI drawing tools

to provide manual tumoral islets and non-tumour annotations.

Cropped images of these annotations were retrieved using web ser-

vices and fed into our supervised learning algorithms for semantic

segmentation. The task was formulated as pixel classification prob-

lem using multiple outputs. User interfaces and communication

mechanisms to launch algorithms from Cytomine-WebUI were im-

plemented to allow experts to execute training and prediction algo-

rithms in an autonomous way. As our algorithms were not perfectly

recognizing tumors, tools were implemented in Cytomine-WebUI to

allow scientists to proofread annotations that were generated auto-

matically. Experts are therefore able to accept or reject annotations

and edit their shapes using drawing tools which allow to edit verti-

ces, scale, substract or merge polygons, or fill internal holes. These

manual operations are automatically translated internally into spa-

tial queries on polygons, and validated annotations are stored in
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Cytomine-Core. After expert validation, statistics can be exported in

standard formats for further analysis.

A similar workflow was used in (Leroi et al., 2015) for semi-

automatic tumor delineation in tens of whole Hematoxylin–

Diaminobenzidine (HDAB) stained immunohistochemical digital

slides in mice lung cancer research (Fig. 3b). Manual annotations

(tumor, stroma and necrosis) were provided by experts to build a

binary semantic segmentation model whose predictions were then

Fig. 2. Overview of Cytomine-WebUI: (a) Zoomable multi-gigapixel image viewer (a la Google Maps) with overlaid annotations colored according to ontology

terms (Original image size: 19968�25088 pixels). (b) Annotation drawing tools including various shapes and operations on polygons. (c) Gallery of bronchus an-

notations in current image. (d) Main menu including project listing, ontology editor, storage to upload images, user activity statistics, textual search engine. (e)

Selected annotation panel with thumbnail, suggested terms (based on content-based image retrieval algorithm), textual description. (f) Project-specific, user-

defined ontology for semantic annotation. (g) Activation of annotation layers of possibly distributed users and softwares. (h) Annotation properties (key-value

pairs). (i) Proofreading tools to accept or edit annotations. (j) Job template panel to launch pre-configured processing routines on regions of interest. (k)

Gigapixel image overview with current position. (l) Multidimensional image panel with selectors for channel, slice in a z-stack, and time point. (m) Image layer

panel to apply on-the-fly tile image processing
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proofread. In this study, this step was followed by quantitative as-

sessment of antibody staining in relevant tissue area.

Finally in (Suarez-Carmona et al., 2015), Cytomine was used to

enable independent assessment by two observers (using the blinded

configuration mode) of recruitment of CD11bþGR1þmyeloid-

derived suppressor cells using mouse ear sponge models from whole

immunofluorescent stained frozen sections. Experts used manual

freehand annotation tools and multidimensional image visualization

interface to analyze and merge fluorescent images (Fig. 3c).

3.2 Scoring and object counting
In these use cases, scientists aim at scoring or counting ‘objects’.

This type of task implies to define (manually or automatically) re-

gions of interest and count different types of ‘objects’ (e.g. cells

marked with a marker-specific antibody) within these regions.

Cytomine was used to enable independent assessment by two ob-

servers (using our blinded configuration mode) of tens of thousands

of BRCA1 mRNA expression signals and nucleus counts by in situ

hybridization assays in tens of formalin-fixed, paraffin-embedded

tissues in human breast cancer research (Boukerroucha et al., 2015)

(Fig. 3e). This study involved pathologists (for manual tumor delin-

eation) and biomedical researchers (for manual annotation of spots

and nucleus using point annotations). It required the development of

web services performing polygon intersection operations to count

spots within specific regions of interest. In addition, scripts using

these web services were implemented to export quantification statis-

tics in standard formats for further statistical analysis. Similarly, ex-

perts in sexual maturation research performed manual classification

and counting (using point annotations) of thousands of oocytes in

whole H&E slides of Chondrostoma nasus (Fig. 3d).

In Weekers et al. (2015), semi-automatic counting of immuno-

reactive cells in regions of interest (cortex, medulla, corticomedul-

lary junction) of tens of kidney sections was performed (Fig. 3i).

Experts (nephrologists, pathologists and biomedical researchers)

first provided manual freehand annotations (regions of interest,

positive and negative cells) to train semantic segmentation models.

These were applied for positive cell detection whose statistics were

exported for each region of interest.

Other applications include manual double-blind scoring within

tissue subregions from immuno-histostained digital slides in melan-

oma cellular microenvironment research (Fig. 3j), and manual point

annotations of hundreds of thousands of nuclei for microproteomics

from small regions of interest in H&E formalin-fixed paraffin-

embedded tissue samples in human breast cancer research

(Longuespée et al., 2015) (Fig. 3k).

3.3 Labeled ground truth creation and object

classification
In this family of tasks, scientists aim at sorting ‘objects’ (e.g. to de-

tect rare abnormal cells or phenotypes). This type of task implies to

detect objects and then classify them according to predefined catego-

ries (see Supplementary Note 5.2.4.2 for a detailed guide on using

automatic detection and recognition algorithms on cytology toy

data, and Supplementary Note 5.2.7.2 that describes how to create

independent ground truth data).

Following these principles, Cytomine enabled manual semantic

annotation of eleven categories of Danio rerio larva defects (e.g.

edema, dead, curved tail, . . . ) in hundreds of brightfield microscopy

images by consensus voting of three biologists (Fig. 3h). These anno-

tations were then used as ground-truth to build a worfklow for auto-

matic phenotype classification using tree-based supervised learning

(Jeanray et al., 2015).

In Marée et al. (2016), we analyzed tissue components in human

renal biopsies (Masson-Trichrome stain). We proposed an auto-

matic glomeruli detection workflow combining image processing

operations using Icy (de Chaumont et al., 2012) and variants of our

supervised classification algorithms. Icy was registered in Cytomine-

Core using our software parameter templating mechanisms and it

was therefore able to import and export image and annotation data

using our web services (see examples in Supplementary Note 5.3).

To build a large ground truth dataset (almost thirty thousand tissue

components), glomeruli candidates automatically detected by Icy

Fig. 3. Examples of annotations created using Cytomine in images from various research fields (see Section 3 for additional details): (a) Delineation of tissue com-

ponents in H&E images in mice lung cancer research (D.Cataldo’s lab), (b) Tumoral areas in HDAB images in mice lung cancer research (P. Martinive’s lab), (c)

Area quantification in immunofluorescent mouse ear sponge assays in tumor angiogenesis (C. Gilles’ lab), (d) Counting of oocytes in H&E images in

Chondrostoma nasus sexual maturation research (V. Gennotte’s lab), (e) mRNA expression quantification through in situ hybridization assays in human breast

cancer research (C.Josse’s lab), (f) Cell types in fine-needle aspiration cytology in human thyroid (I. Salmon’s lab), (g) Landmarks in Danio rerio embryo develop-

ment (M. Muller’s lab), (h) Phenotypes in Danio rerio toxicology research (M.Muller’s lab), (i) Region delineation and cell counting in immunohistochemistry

images in renal ischemia/reperfusion research (F.Jouret’s lab), (j) Cell scoring in immunohistochemistry images in melanoma microenvironment research

(P.Quatresooz’s lab), (k) Nucleus counting in H&E images in human breast cancer research (E. De Pauw’s lab)
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were analyzed using our proofreading tools for object classification.

These interfaces show galleries of classified objects and allow a user

to readily validate or correct (by drag and drop) predictions of

ontology terms.

Other large ground truth datasets were collected using manual

annotation tools. Several thousands of cells were annotated to build

a large ground truth dataset in human thyroid cytology for the (on-

going) development of rare cell detection algorithms (Fig. 3f),

inspired by previous work on cervical cancer screening (Delga et al.,

2014). We also implemented novel user interfaces (Cytomine-IRIS,

see Supplementary Note 5.2.7.2) to enable different users to inde-

pendently assign ontology terms to objects of interest. In particular,

it was used by several pathologists to annotate bone marrow cells in

order to study inter-observer agreements and build a large concord-

ant ground truth dataset for the design of cell classification

algorithms.

3.4 Landmark detection and morphometric

measurements
In this fourth family of quantification tasks, the goal is to detect spe-

cific landmarks (or interest points) in images to perform morpho-

metric measurements (e.g. distances between skeletal points in

developmental studies). This implies to scan images to identify local-

izations of specific points (see Suppl Note. 5.2.4.3 for a step-by-step

guide using automatic recognition algorithms on toy data).

Cytomine was used to perform manual annotation of tens of

thousands of landmarks (positioning and naming) in hundreds of

microscopy images of Danio rerio embryo for morphometric meas-

urements in hormonal and hypergravity bone development studies

(Aceto et al., 2015) (Fig. 3g). These annotations are currently used

to design and evaluate a generic landmark detection algorithm, fol-

lowing previous work in cephalometry (Huang et al., 2015). For this

type of tasks, we implemented proofreading web interfaces to rap-

idly and precisely visualize the localization of detected interest

points, and to manually move them if they are not well positioned.

4 Discussion

The proposed software and its algorithms have already been applied

to a wide variety of image types to accelerate discovery and to en-

able collaborative analysis. These results encourage its exploitation

in many domains. However, in practical applications, obtaining sat-

isfactory recognition performance using automatic algorithms de-

pends on many factors including image variations (e.g. due to image

acquisition and sample preparation protocols), and the quality and

quantity of annotations provided for training (see e.g. empirical

evaluations in Supplementary Note 4.2). Although the combination

of our algorithms and proof-editing tools enabled to derive relevant

quantification results in various applications, it is important to note

that further adaptation of algorithms or developing novel recogni-

tion algorithms might be needed for specific types of images or vary-

ing acquisition conditions. A key advantage of our platform is

therefore its extensibility. Indeed, our architecture enables computer

scientists to add their novel software, register them to the Cytomine-

Core and launch them from Cytomine-WebUI or from the command

line. Also, annotation objects created by each instance of a software

are stored in the database and are available through web services.

These can then be subsequently proofread, or retrieved through the

API by other software for further analysis and creation of novel –

more precise – annotation objects. This allows to create complex

image analysis pipelines based on distributed software.

It has to be noted that although the software allows visualization

of 5D image planes (x,y,z,c,t), current applications cited in Section 3

have involved independent analysis of 2D image planes only (e.g.

fluorescent image planes in (Suarez-Carmona et al., 2015) and tissue

slices in (Marée et al., 2014)). Using our API based on web services,

one is able to extend the software by designing analysis algorithms

that integrate 5D information if needed, or to interoperate with

existing software.

5 Conclusion

Cytomine is a versatile software for collaborative analysis of multi-

gigapixel images as already demonstrated by its various

applications. With our design choices, we also believe our platform

will facilitate accessibility, curation and dissemination of imaging-

related data. In the future, it might be extended and tailored to sup-

port: (i) the setup of large-scale, multi-centric image repositories or

the emergence of an imaging ‘data bazaar’ (Poldrack, 2014) to en-

able new research questions or validate results on larger cohorts, (ii)

the organization of image analysis challenges on unprecedented

benchmarks to foster image machine learning research, (iii) the

crowdsourcing of image annotation tasks to tackle intractable data-

sets, (iv) the dissemination of multi-gigapixel imaging data and asso-

ciated quantification results to support scientific claims of research

papers and (v) increase the reproducibility of scientific results by

providing a platform where published results are available along the

algorithms and the image data. We have also started to derive the

software for teaching purposes (see Supplementary Note 4.1.2).
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