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Abstract

Motivation: RNA sequencing (RNA-seq) experiments now span hundreds to thousands of samples.

Current spliced alignment software is designed to analyze each sample separately. Consequently,

no information is gained from analyzing multiple samples together, and it requires extra work to

obtain analysis products that incorporate data from across samples.

Results: We describe Rail-RNA, a cloud-enabled spliced aligner that analyzes many samples at

once. Rail-RNA eliminates redundant work across samples, making it more efficient as samples are

added. For many samples, Rail-RNA is more accurate than annotation-assisted aligners. We use

Rail-RNA to align 667 RNA-seq samples from the GEUVADIS project on Amazon Web Services in

under 16 h for US$0.91 per sample. Rail-RNA outputs alignments in SAM/BAM format; but it also

outputs (i) base-level coverage bigWigs for each sample; (ii) coverage bigWigs encoding normal-

ized mean and median coverages at each base across samples analyzed; and (iii) exon–exon splice

junctions and indels (features) in columnar formats that juxtapose coverages in samples in which a

given feature is found. Supplementary outputs are ready for use with downstream packages for re-

producible statistical analysis. We use Rail-RNA to identify expressed regions in the GEUVADIS

samples and show that both annotated and unannotated (novel) expressed regions exhibit consist-

ent patterns of variation across populations and with respect to known confounding variables.

Availability and Implementation: Rail-RNA is open-source software available at http://rail.bio.

Contacts: anellore@gmail.com or langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing has improved rapidly in the last several years (Glenn, 2011;

Hayden, 2014). RNA sequencing (RNA-seq) (Ozsolak and Milos,

2010; Wang et al., 2009) has become a standard tool for studying gene

expression due to its ability to detect novel transcriptional activity with-

out relying on previously defined gene sequence. The Sequence Read

Archive contains data for over 170 000 RNA-seq samples, including

over 50 000 from human samples (Leinonen et al., 2010b). Projects

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 4033

Bioinformatics, 33(24), 2017, 4033–4040

doi: 10.1093/bioinformatics/btw575

Advance Access Publication Date: 3 September 2016

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/24/4033/2525684 by guest on 10 April 2024

http://rail.bio
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw575/-/DC1
Deleted Text: ; <xref ref-type=
Deleted Text: ,
Deleted Text: ,
http://www.oxfordjournals.org/


like GTEx (Lonsdale et al., 2013) and TCGA (http://cancergenome.nih.

gov) are generating RNA-seq data on thousands of samples across nor-

mal and malignant tissues derived from hundreds to thousands of

individuals.

A common use of RNA-seq is to characterize gene expression

across samples and ultimately to identify expression patterns associ-

ated with outcomes of interest. At the outset, a read aligner deter-

mines where sequencing reads originated with respect to the

reference genome or annotated transcriptome. Unlike read alignment

for DNA sequencing reads, RNA-seq alignment must be splice-aware

to accommodate introns spliced out of mature mRNA transcripts,

creating exon–exon junctions. While RNA-seq data is often gener-

ated for large groups (hundreds) of biological replicates, past align-

ment tools were designed to run on each sample separately (Au et al.,

2010; Bonfert et al., 2012; Bryant et al., 2010; Cloonan et al., 2009;

De Bona et al., 2008; Dobin et al., 2013; Grant et al., 2011; Hu

et al., 2012; Huang et al., 2011; Jean et al., 2010; Kim et al., 2013,

2015; Marco-Sola et al., 2012; Philippe et al., 2013; Trapnell et al.,

2009; Wang et al., 2010; Wu and Nacu, 2010; Zhang et al., 2012).

We introduce Rail-RNA, an annotation-agnostic spliced read

aligner. Uniquely, Rail-RNA is designed to analyze many samples at

once to (i) borrow strength for accurate detection of exon–exon junc-

tions, even at low coverage, (ii) avoid effort spent aligning redundant

sequences within or across samples, greatly improving scalability and

(iii) compute cross-sample results including the normalized mean

coverages of each base of the genome across samples. Rail-RNA can

be run on a computer cluster at the user’s home institution or on a

cluster rented from a commercial cloud computing provider at mod-

est cost per sample. Cloud services offer standardized units of hard-

ware and software, enabling Rail-RNA users to easily reproduce

large-scale analyses performed in other labs. Rail-RNA’s outputs are

compatible with downstream tools for isoform assembly, quantita-

tion and count- and region-based differential expression.

We demonstrate Rail-RNA is more accurate than other tools. We

show Rail-RNA is less susceptible to biases affecting other tools; spe-

cifically, (i) Rail-RNA has substantially higher recall of alignments

across low-coverage exon–exon junctions and (ii) Rail-RNA is accur-

ate without a gene annotation, avoiding annotation bias resulting

from potentially incomplete (Jaffe et al., 2015) or incorrect transcript

annotations. We run Rail-RNA on 667 paired-end lymphoblastoid

cell line (LCL) RNA-seq samples from the GEUVADIS study

(Lappalainen et al., 2013), obtaining results in 15 h and 47 min at a

cost of US$0.91 (hereafter, we use the symbol $ to denote USD) per

sample. This is a fraction of per-sample sequencing costs, which are

$20 or more (Combs and Eisen, 2015). We illustrate the usability of

Rail-RNA’s output by performing a region-based differential expres-

sion analysis of the GEUVADIS dataset. Our analysis identifies 285

695 expressed regions, including 19 649 in intergenic regions. We

show that intergenic and annotated regions exhibit similar patterns

of variation across populations and with respect to technical

confounders.

Altogether, Rail-RNA is a significant step in the direction of us-

able software that quickly, reproducibly and accurately analyzes

large numbers of RNA-seq samples.

2 Results

The GEUVADIS consortium performed mRNA sequencing of 465

lymphoblastoid cell line samples derived from CEPH (CEU), Finnish

(FIN), British (GBR), Toscani (TSI) and Yoruba (YRI) populations

of the 1000 Genomes Project (Lappalainen et al., 2013), giving 667

paired-end samples. Per-sample sequencing depth is summarized in

Section S.2. For information on reproducing all our results, includ-

ing software versions, see Section S.3.

2.1 Design principles of Rail-RNA
Rail-RNA follows the MapReduce programming model, and is struc-

tured as an alternating sequence of aggregate steps and compute

steps. Aggregate steps group and order data in preparation for future

compute steps. Compute steps run concurrently on ordered groups of

data. In this framework, it is natural to bring together related data so

that decisions can be informed by all samples at once. This affords

greater accuracy and efficiency than if samples are analyzed separ-

ately. Rail-RNA aggregates across samples at multiple points in the

pipeline to increase accuracy (borrowing strength for junction call-

ing) and scalability (through elimination of redundant alignment

work).

Rail-RNA can be run in elastic, parallel, or single-computer

mode. In single-computer mode, Rail-RNA runs on multiple proces-

sors on a single computer. In parallel mode, Rail-RNA runs on any

of the variety of cluster setups supported by IPython Parallel (Perez

and Granger, 2007). These include Sun Grid Engine (SGE), Message

Passing Interface (MPI) and StarCluster.

In elastic mode, Rail-RNA is run using the Amazon Web

Services (AWS) Elastic MapReduce (EMR) service, which itself uses

Hadoop, an implementation of MapReduce (Dean and Ghemawat,

2008). EMR is specifically for computer clusters rented on demand

from Amazon’s Elastic Compute Cloud (EC2). Amazon Simple

Storage Service (S3) stores intermediate data and output.

There are advantages and disadvantages to commercial cloud

computing services like AWS (Schatz et al., 2010; Stein et al., 2010).

One advantage is that it facilitates reproducibility: one researcher can

reproduce the same hardware and software setup used by another.

Another advantage for Rail-RNA, which stores all intermediate and

final results in S3, is that there is no risk of exhausting the cluster’s

disk space even for datasets with many samples. Without these facili-

ties, making scalable software that runs easily on large numbers of

RNA-seq samples in different laboratories is quite challenging.

Rail-RNA supports both paired-end and unpaired RNA-seq sam-

ples. It supports input data consisting of reads of various lengths,

and can detect exon–exon junctions involving exons as short as 9 bp

by default. Rail-RNA uses Bowtie 2 (Langmead and Salzberg, 2012)

to align reads, including reads spanning exon–exon junctions, so it

is naturally both indel-aware (with affine gap penalty) and base

quality-aware. Rail-RNA is also deterministic; the same input data

and parameters will yield the same outputs regardless of number of

processors and computers used and regardless of whether it runs in

elastic, parallel, or single-computer mode.

2.2 Scalability
We randomly selected 112 paired-end samples from the GEUVADIS

study, with 16 coming from each of the 7 laboratories in which

sequencing was performed. We also randomly selected subsets of 28

and 56 samples from the 112 to illustrate Rail-RNA’s scalability on

EMR (Section S.4).

We use the term ‘instance’ to refer to a computer (or virtualized

fraction of one) that can be rented from EC2. An instance can have

multiple processing cores. For experiments described in this section:

(i) we used c3.2xlarge EC2 spot instances, each with eight process-

ing cores. See Section S.5 for details on this instance type and

Section S.6 for details on spot instances; (i) we used S3 to store in-

puts, intermediate results and final results; (iii) we performed all
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experiments and stored all S3 data in the EU region (eu-west-1). See

Section S.7 for details on cost measurements. For every experiment

in this paper, we measure cost by totaling the bid price for the EC2

spot instances (here, $0.11 per instance per hour using spot market-

place) and the Elastic MapReduce surcharges (here, $0.105 per in-

stance per hour). On the one hand, this estimate can be low since it

does not account for costs incurred by S3 and related services. On

the other, the estimate can be high since the actual price paid de-

pends on the spot market price, which is lower than the bid price.

Storage costs can vary dramatically depending on how long inter-

mediate and final results are kept on S3. In the EU region, it cur-

rently costs about $0.03 per GB per month to store data on S3.

Further, downloading data from S3 to a local cluster costs about

$0.09 per GB. Alignment BAMs, coverage bigWigs and junction

and indel BEDs together take up about 2 GB per sample with 20 mil-

lion read pairs. This adds about $0.18 per sample if results are

downloaded to a local cluster and $0.06 per sample if results are

kept on S3 for a month. Intermediate data deleted immediately after

a job flow is complete contributes negligibly to analysis cost per

sample.

The 112 selected GEUVADIS samples spanned 2.4 terabytes of

compressed FASTQ data. We preprocessed each subset of 28, 56

and 112 samples of the 112 using different Elastic MapReduce clus-

ters, each spanning 21 c3.2xlarge instances. Each cluster down-

loaded source data from the European Nucleotide Archive FTP

server (Leinonen et al., 2010a); see http://www.ebi.ac.uk/ena/data/

view/ERP001942 for download URLs. Preprocessing 28 samples

took 1 h and 3 min, costing $9.03, preprocessing 56 samples took 1

h and 14 min, costing $9.03 and preprocessing 112 samples took 2 h

and 14 min, costing $13.54.

We ran Rail-RNA several times to assess scalability, which we

measured with respect to both the number of instances in the cluster

and the number of input samples. To measure scalability with re-

spect to cluster size, Rail-RNA was run on a random subset of 28 of

the 112 samples using EMR clusters of 10, 20 and 40 c3.2xlarge

core instances (Fig. 1a, b). Each EMR cluster has an extra instance

called the master instance that coordinates cluster activity; we ex-

clude it from instance counts here because it contributes no workers.

Each of the 10- and 20-instance experiments was run exactly once,

while the 40-instance experiment was run three times to measure

wall-clock time variability. The orange dot representing the experi-

ment on 40 instances is at the mean number of samples analyzed per

hour, while the horizontal lines above and below represent the min-

imum and maximum values. The dashed blue line shows an ideal

linear extrapolation from the 10-instance data point. This illustrates

how throughput would increase if doubling the number of instances

also doubled throughput. Rail-RNA’s scaling falls short of ideal lin-

ear scaling, but this is expected due to various sources of overhead

including communication and load imbalance. Importantly, Rail-

RNA’s throughput continues to grow as the number of instances in-

creases to 40, indicating Rail-RNA can make effective use of hun-

dreds of processors at once.

To measure scalability with respect to number of input samples,

Rail-RNA was run on 28, 56 and 112 samples using a cluster of 40

instances (Fig. 1c, d). The 40-instance experiment with 28 samples

(blue dot and lines) reports the same results as in 1a, but now in

terms of running time. The dashed blue line extrapolates linear scal-

ing from the 28-sample data point, assuming doubling the number of

samples doubles running time. The 56- and 112-sample points fall

well below the line, indicating Rail-RNA achieves better-than-linear

scaling of running time with respect to number of samples analyzed.

Rail-RNA gets more efficient as more samples are analyzed in part

because it identifies and eliminates redundant alignment work within

and across samples (Section S.8). Analyzing many samples together is

particularly beneficial, with cost per sample dropping from $1.89 for

28 samples to $1.02 for 112 samples (Fig. 1d). In an experiment

described in Section 2.4, per-sample cost was reduced to $0.91 per

sample.

A breakdown of the time taken by the steps in Rail-RNA’s pipe-

line is provided in Table S1.

2.3 Accuracy
We simulated 112 RNA-seq samples with 40 million 76-bp paired-

end reads each using Flux Simulator (Griebel et al., 2012).

Typically, Flux assigns expression levels to transcripts with a model-

based approach. Instead, we used FPKM expression levels from the

set of 112 randomly selected paired-end samples studied in Section

2.2; they are taken from the GEUVADIS study (Lappalainen et al.,

2013) and are available at http://www.ebi.ac.uk/arrayexpress/files/

E-GEUV-3/GD660.TrQuantRPKM.txt.gz. See Section S.9 for simu-

lation details.

We compared Rail-RNA’s accuracy to that of TopHat 2 v2.1.0

(Kim et al., 2013), Subjunc from v1.4.6p-v4 of the Subread package

(Liao et al., 2013), STAR v2.4.2a (Dobin et al., 2013) and HISAT

v0.1.6-beta (Kim et al., 2015). We ran TopHat 2 with (‘Tophat 2

ann’) and without (‘Tophat 2 no ann’) the Gencode v12 annotation

(Cunningham et al., 2015) provided. We ran Subjunc using the de-

fault values of its command-line parameters. We ran STAR in three

ways: in one pass (‘STAR 1 pass’); in one pass with exon–exon junc-

tions from Gencode v12 provided (‘STAR 1 pass ann’); and in two

passes (‘STAR 2 pass’). We similarly ran HISAT in three ways: in

one pass (‘HISAT 1 pass’); in one pass with exon–exon junctions

from Gencode v12 provided (‘HISAT 1 pass ann’); and in two passes

(‘HISAT 2 pass’). One-pass methods (‘STAR 1 pass,’ ‘STAR 1 pass

ann,’ ‘HISAT 1 pass,’ and ‘HISAT 1 pass ann’) align reads and call

exon–exon junctions in one step, whereas two-pass methods (all

other protocols) additionally perform a second step that realigns

reads in light of exon–exon junction calls from the first. Section S.10

describes the protocols in detail.

When an alignment program was run with annotation (‘Tophat 2

ann,’ ‘STAR 1 pass ann,’ and ‘HISAT 1 pass ann’), we provided the

same annotation from which Flux Simulator simulated the reads.

That is, the provided annotation consisted of a superset of the actual

transcripts present. Consequently, protocols where the annotation

was provided were given an artificial advantage.

Described below are the three ways in which Rail-RNA was run.

1. On a single sample (‘Rail single’). Here, Rail-RNA uses reads

from the given sample to identify exon–exon junctions. Like in

two-pass protocols, reads are then realigned to transcript frag-

ments to handle the case where a read overlaps an exon–exon

junction near its 50 or 30 end.

2. On 112 samples with exon–exon junction filter (‘Rail all’). After

initial alignment, Rail-RNA compiles a list of exon–exon junc-

tions found in any sample. The list is then filtered; an exon–exon

junction passes the filter if (i) it appears in at least 5% of the in-

put samples, or (ii) it is overlapped by at least 5 reads in any

sample. The filtered exon–exon junction list is used to build the

set of transcript fragments to which each sample is then

realigned.

3. On 112 samples without exon–exon junction filter (‘Rail all

NF’). Identical to ‘Rail all’ but with no exon–exon junction fil-

ter. This is not a recommended protocol; we include it only to

show the filter’s effect.
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In none of the three modes does Rail-RNA use a gene annota-

tion: Rail-RNA is consistently annotation-agnostic.

We consider two accuracy measures in the main text: (i) overlap

accuracy, measuring precision and recall of overlap events. Each

event is an instance where the primary alignment of a read overlaps

an exon–exon junction; (ii) exon–exon junction accuracy, measuring

precision of exon–exon junctions called by a given aligner and recall

of the set of exon–exon junctions within a sample or across samples.

We also compute F-score, the harmonic mean of precision and re-

call. Section S.11 formally defines these measures as well as a meas-

ure of overall mapping accuracy.

The ‘Rail all’ and ‘Rail all NF’ protocols were run on all 112

simulations. Other protocols were run on each of the 20 samples ran-

domly selected from the 112. We emphasize that even though proto-

cols labeled ‘Rail all’ analyze all 112 samples at once, we evaluate

their output alignments and calls only for the sample of 20. Figure 2

displays overlap and exon–exon junction accuracy measurements.

Figure 2a summarizes the accuracy of each tool across the 20

samples.

As illustrated in Figure 2a, Rail-RNA has the highest overlap F-

score of the protocols tested, including those using a gene annota-

tion. Rail-RNA’s overlap precision is comparable to the most precise

protocol (‘Subjunc’ in this case) and its recall is comparable to the

highest of any protocol (‘STAR 1 pass ann’). Further, analyzing

many samples at once (‘Rail all’) achieves greater F-score compared

to analyzing one (‘Rail single’). This is more pronounced for exon–

exon junction accuracy than for overlap accuracy since borrowing

strength across replicates is particularly effective at detecting low-

coverage junctions (Section S.13). Mean exon–exon junction recall

increases from 0.880 to 0.939 (Section S.12), which adds about 10

000 true positives.

Figure 2b demonstrates the efficacy of the exon–exon junction

filter in the ‘Rail all’ protocol. Precision/recall are defined similarly

as for a single sample, but pooled across all samples. That is, recall

is the fraction of exon–exon junctions with at least one simulated

spanning read in at least one sample that Rail-RNA detects in at

least one sample. The improvement in precision when moving from

the unfiltered (0.673) to the filtered (0.964) exon–exon junction list

shows that the filter removes a large fraction of incorrect exon–exon

junction calls because they are supported in only a few samples.

Further, the distribution of filtered exon–exon junctions with certain

donor/acceptor motifs matches the expected distribution (GT–AG:

96.5%, GC–AG: 2.6%, AT–AC: 1.0%) much more closely than the

same distribution for the unfiltered exon–exon junctions.

Rail-RNA’s protocols also tie ‘STAR 1 pass’ in achieving the high-

est mean F-scores in an accuracy comparison that considers all align-

ments, including those falling entirely within exons; see Section S.12.

2.4 Analysis of GEUVADIS RNA-seq samples
We demonstrate the utility of Rail-RNA’s outputs by performing a

novel analysis of 667 paired-end GEUVADIS RNA-seq samples

from lymphoblastoid cell lines (LCLs) (Lappalainen et al., 2013).

Starting from FASTQ inputs, Rail-RNA produced bigWig files

(Kent et al., 2010) encoding genomic coverage; per-sample BED files

recording exon–exon junctions, insertions and deletions; and sorted,

indexed BAM (Li et al., 2009) files recording the alignments. We

downloaded and preprocessed all the GEUVADIS data using a clus-

ter of 21 c3.2xlarge Amazon EC2 instances in 7 h and 29 min,

Fig. 1. Scaling and cost of Rail-RNA versus cluster size and number of samples. (a) depicts scaling with respect to cluster size. Horizontal axis is the number of in-

stances in the cluster. Vertical axis is throughput measured as number of samples analyzed per hour. The dashed line illustrates ideal linear scaling, extrapolated

from the 10-instance result. (b) is a table of per-sample costs for each experiment in a). (c) plots Rail-RNA’s running time on 28, 56 and 112 paired-end GEUVADIS

samples. The dashed line represents linear scaling, extrapolating that it takes twice as long to analyze approximately twice as much data. Rail-RNA achieves bet-

ter-than-linear scaling with respect to number of samples as reflected in the table of costs in (d): cost per sample decreases as number of samples analyzed in-

creases. Per-sample costs in (b) and (d) reported here do not include the cost of preprocessing, which depends on download speed. These costs are reported in

the main text. The master instance is also not included in the cluster sizes quoted here
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costing a total of $36.12. Rail-RNA then ran on 61 c3.8xlarge

Amazon EC2 instances (see S.5) spanning 1952 processors. The run

completed in 15 h and 47 min and cost $605.12 ($0.91 per sample).

Including preprocessing, the cost per sample was $0.96.

We analyzed bigWig outputs using the derfinder Bioconductor

package (Collado-Torres et al., 2015) based on algorithms described

in (Frazee et al., 2014; Jaffe et al., 2015). derfinder identified contigu-

ous genomic stretches where average coverage across all samples was

above a genome-wide threshold (see Section S.14). Adjacent bases

above the threshold were grouped into ‘expressed regions’ (ERs). We

identified 285 695 ERs in this way; median ER length was 70 bp

(interquartile range, IQR: 7–145). While gene annotation/structure is

not used to identify ERs, the regions can be overlapped with a gene

annotation to assess novel transcriptional activity, as shown in

Supplementary Figure S1a. Relative to Ensembl v75 (Cunningham

et al., 2015), we found that 151 581 ERs (53.1%) were within exons

(median length: 93 bp, IQR: 21–155) and another 38 784 (13.9%)

overlapped both exonic and intronic sequence (median length:

132 bp, IQR: 76–269) perhaps representing alternative ends to

known exons. We also found 72 367 regions (25.3%) contained

within intronic sequence (median length: 9 bp, IQR: 2–37) and an-

other 19 649 regions (6.9%) within intergenic sequence (median

length: 15 bp, IQR: 3–71). These intronic and intergenic ERs could

represent novel (polyadenylated, since the data was generated using

polyAþprep) non-coding RNA.

We also reproduced the variance component modeling illustrated

in Figure 3 of Ac’t Hoen et al. (2013). At each of the 285 695 ERs,

we modeled log2-adjusted expression levels as a function of many

largely technical variables related to the RNA (RIN value, RNA con-

centration and RNA quantity), the sequencing libraries (library prep-

aration date, library primer index for each sample, method then

target and actual quantities of library concentrations, and library size)

and the sequencing itself (cluster kit, sequencing kit, cluster density

and sequencing lane). We further included the ethnicity of each sam-

ple as a variable because it appeared to explain moderate variability

in expression levels at many ERs. Lastly, we calculated the amount of

residual variability not explained by any of the variables we con-

sidered. Interestingly, we found little difference in the amounts of

variability explained by each of the variables studied when we strati-

fied the ERs by the annotation categories described above

(Supplementary Fig. S1b–e), suggesting that the technical factors

affect expression of previously unannotated (i.e. intronic and inter-

genic) features in a similar manner as they do annotated gene

structures.

3 Methods

For each read, Rail-RNA seeks the (possibly spliced) alignment

maximizing the alignment score, which measures similarity between

the read and reference. Bowtie 2’s local-mode scoring function (see

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml) is used:

matched bases add a bonus while mismatched bases and gaps incur

a penalty. Gap penalties are affine. Ties for best alignment score are

broken as follows. Each alignment i among the highest-scoring

alignments overlaps some number n(i) of exon–exon junctions,

where n(i)¼0 for an alignment wholly contained in a single exon.

Fig. 2. Accuracy comparisons. (a) Means and standard deviations of accuracy measures of various alignment protocols across 20 simulated samples whose

FPKMs mimic those of 20 GEUVADIS samples. ‘Rail all’ protocols involve running Rail-RNA on all 112 simulated samples. Overlap accuracy is shown in red,

exon–exon junction accuracy in blue. Some tools are run with (top table) and without (bottom table) a provided gene annotation. Note that Rail-RNA never uses

an annotation. For Rail-RNA versus unannotated protocols, the best two results in each column are in boldface, and for Rail-RNA versus annotated protocols, the

best result in each column is in boldface. (b) Rail-RNA’s accuracy on two sets of exon–exon junctions found across all 112 simulated samples: one before and one

after application of the exon–exon junction filter
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If the smallest n(i) among the highest-scoring alignments is attained

by exactly one alignment, that alignment is chosen. If the smallest

n(i) is attained by more than one alignment, the tie is broken in a

weighted random fashion where alignments overlapping high-

coverage junctions are preferred to alignments overlapping low-

coverage junctions (Section S.15).

Methods used in the statistical analysis of the GEUVADIS data-

set are described in Section S.14. Steps of the Rail-RNA pipeline are

in boldface and described in the following paragraphs. The term

‘workers’ refers to computer processes under Rail-RNA’s control.

Usually many workers operate simultaneously, distributed across

several computers. Each step writes either intermediate or final out-

put data. Depending on the outputs requested by the user, some

steps may be omitted. Details of how Rail-RNA is implemented in

various distributed environments are given in Section S.16. Figure 3

illustrates the full Rail-RNA pipeline, highlighting where redundant

alignment work is eliminated.

As input to the preprocess reads step, the user provides a manifest

file containing a URL pointer to each input FASTQ file. Two URLs

are specified for each paired-end sample, one for a single-end sample.

URLs point to the local filesystem, the web, or on Amazon’s Simple

Storage Service (S3). Input reads are downloaded as necessary and

preprocessed into a format that facilitates parallelism (Section S.17).

Duplicate reads and readlets both within and across samples

lead to redundant alignment work. To eliminate redundant work, in

the align reads step Rail-RNA groups duplicate reads so that a

worker operates on all reads having the same nucleotide sequence at

once. Afterwards, two passes of alignment are performed using

Bowtie 2. In the first, each unique read sequence is aligned to the

genome. If there is exactly one highest-scoring alignment and it has

no gaps, mismatches or soft-clipped bases, all reads with the same

nucleotide sequence are assigned that alignment. If the alignment is

not perfect or if there is more than one highest-scoring alignment,

all reads with the same nucleotide sequence are run through a se-

cond pass of Bowtie 2 to ensure that quality sequences are taken

into consideration when scoring alignments or ties are broken. Some

read sequences with imperfect alignments are divided into short

overlapping substrings called readlets. These sequences are searched

for whether they overlap exon–exon junctions in a later step. See

Section S.18 for further details.

In the align readlets step, Rail-RNA groups duplicate readlets so

that a worker operates on all readlets across samples with the same

nucleotide sequence at once. Each distinct readlet sequence is

aligned to the genome with Bowtie (Langmead et al., 2009) exactly

once, eliminating redundant alignment work. Rail-RNA searches

for several possible alignments, up to 30 by default using command-

line parameters -a -m 30. Readlets with the same nucleotide

sequence are then each associated with the same set of alignments.

In the detect exon–exon junctions using readlet alignments step,

Rail-RNA uses correlation clustering and maximum clique finding

to detect exon–exon junctions spanned by each distinct read

sequence, as detailed in Section S.19. The algorithm is reminiscent

of the seed-and-vote strategy of Subread/subjunc (Liao et al., 2013),

and we note similarities and differences in Section S.20. The step

outputs exon–exon junctions and the number of reads covering each

junction in each sample.

In simulations we observed that junctions detected in only a

small fraction of samples tend to be false positives (Fig. 2b).

Consequently, the global list of exon–exon junctions is quickly

dominated by false positives as the number of samples increases. To

keep precision high, in the filter exon–exon junctions step, Rail-

RNA borrows strength across samples to remove junctions not

meeting one of these criteria:

1. The exon–exon junction appears in at least K% of samples.

2. The exon–exon junction is covered by at least J reads in at least

one sample.

K ¼ J ¼ 5 by default, but both are configurable. See Section S.21

for a discussion of how this filter was chosen. In the enumerate in-

tron configurations step, Rail-RNA enumerates the ways that mul-

tiple exon–exon junctions detected on the same strand in the same

sample can be overlapped by a read segment s(readlet_config_size)

spanning readlet_config_size bases; we call a way a read or readlet

can overlap multiple exon–exon junctions an ‘intron configuration.’

Intron configurations for readlets are obtained and output as

described in Section S.22.

In the retrieve and index isofrags step, each worker operates on an

intron configuration at a time, concatenating the exonic bases sur-

rounding its introns to form a transcript fragment of size readlet_con-

fig_size. This is termed an ‘isofrag.’ Care is taken to avoid including

intronic bases in isofrags (Section S.23). Subsequently, a single worker

uses bowtie2-build to build a single Bowtie 2 index for all enumerated

isofrags. Later, Bowtie 2 uses the index to realign reads in the next step.

In the finalize combinations of exon–exon junctions overlapped

by read sequences step, read sequences that failed to align perfectly

in the first step are aligned to isofrags using Bowtie 2 in local mode

with a minimum score threshold of 48 by default. Local alignment is

used since indexed sequences are of length readlet_config_size,

shorter than the read length. Rail-RNA runs Bowtie 2 with the par-

ameter -k 30 by default so that many alignments are reported per

read sequence. From these alignments Rail-RNA derives a list of

exon–exon junctions the read could possibly overlap. A graph algo-

rithm enumerates the combinations of exon–exon junctions the read

sequence might simultaneously overlap; see Section S.24 for details.

In the realign reads step, read sequences that failed to align per-

fectly in the first step are realigned to a set S of transcript fragments.

Each transcript fragment in S overlaps a different combination of

exon–exon junctions found in the previous step. All the exon–exon

Fig. 3. Rail-RNA pipeline. Blue boxes are steps, and green boxes are output

steps, which are optional depending on which deliverables are requested by

the user. Purple indicators illustrate the flow of intermediate data, with tri-

angles specifying the order in which steps are executed. Aggregations that

eliminate redundant alignment work are highlighted in red (Color version of

this figure is available at Bioinformatics online.)
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junction combinations found for the read’s nucleotide sequence are

spanned by a subset of S. Moreover, several distinct read sequences

may overlap transcript fragments in S. A given worker performs re-

alignment as follows.

1. Transcript fragments in S are recorded and indexed with bow-

tie2-build.

2. Reads are realigned to the new index using Bowtie 2 in –local

mode. These are reads that are in the same index bin referenced

in Section S.18.

In the collect and compare read alignments step, Bowtie 2 align-

ments of reads accumulated in previous steps, except for those that

aligned perfectly in the ‘align reads to genome’ step, are collected

here and partitioned by read name. A worker operates on all align-

ments of a given read at once. For each read, if there is exactly one

highest-scoring alignment for that read, it is chosen as the primary

alignment. Otherwise, Rail-RNA attempts to break the tie by select-

ing the alignment spanning the fewest exon–exon junctions. If there

is still a tie, it is broken by a random draw weighted by the number

of uniquely aligned reads supporting each exon–exon junction, as

described by (3) in Section S.15.

By default, in the write BAMs step, all primary alignments,

including perfect alignments from the ‘align reads’ step, are output.

The user may disable this output or instead specify the -k X parameter

to ask Rail-RNA to output up to X highest-scoring alignments per

read. Alignments are written as sorted, indexed BAM files. By default,

one BAM file is output per sample per chromosome. In elastic mode,

all BAM files and their indexes are uploaded to S3. Tools such as the

UCSC genome browser (Kent et al., 2002) allow users to visualize

portions of BAM files without having to download them first.

By default, in the compile coverage vectors and write bigWigs

step, Rail-RNA records vectors encoding depth of coverage at each

position in the reference genome. The user may disable this output.

Two bigWig files are produced per sample: one records coverage of

the genome by reads for which each has exactly one highest-scoring

alignment, and the other records coverage of the genome by primary

alignments. bigWig files encoding mean and median coverage of the

genome across samples are also written. The contributions of each

sample to the mean and median are normalized by the number of

mapped reads in the sample. In elastic mode, bigWig files are up-

loaded to S3. For example, the analysis in Section 2.4 was per-

formed on bigWig files on S3. Further, tools such as the UCSC

genome browser (Kent et al., 2002) allow users to visualize portions

of bigWig files without having to download them first. These meth-

ods are detailed in Section S.25.

In the write exon–exon-junctions and indels step, Rail-RNA

writes a set of TSV files. Each file contains a table with rows corres-

ponding to samples and columns to distinct features. The (i, j)th

element is the number of reads in the ith sample containing the jth

feature. Three TSVs are written per sample, one where features are

insertions, one for deletions and one for exon–exon junctions. Also,

three BED files are written per sample: one with exon–exon junc-

tions, one with insertions and one with deletions. These are format-

ted identically to TopHat 2’s analogous output. In elastic mode,

these files are uploaded to S3, where they can be analyzed as soon as

Rail-RNA completes. The user may disable any outputs of this step.

4 Discussion

While it is challenging to design software that runs naturally on

many samples at once, Rail-RNA demonstrates that this comes with

unique and substantial advantages. Rail-RNA achieves better-than-

linear growth in throughput (and consequently reduction in cost)

per sample as the number of samples grows. By using information

from all samples when analyzing data from a given sample, Rail-

RNA achieves superior accuracy, with its accuracy advantage grow-

ing as samples are added. Rail-RNA also substantially resolves two

biases affecting other tools: bias against low-coverage junctions and

annotation bias. Rail-RNA results obtained by one investigator can

be reliably reproduced by another since Rail-RNA computer clusters

rented from commercial cloud services have standardized hardware

and software.

We demonstrated Rail-RNA by re-analyzing a 667-sample data-

set in 15 h and 40 min at a per-sample cost of $0.91, far lower than

sequencing cost (Combs and Eisen, 2015). We analyzed region-level

differential expression by simply passing Rail-RNA’s bigWig out-

puts to standard downstream tools (e.g. the derfinder Bioconductor

packages) for further analysis. Users can reproduce this analysis

using resources rented from a commercial cloud provider,

without having to download any large datasets. Altogether, this is

an important step in the direction of usable software that quickly,

reproducibly and accurately analyzes large numbers of RNA-seq

samples at once.

We used the simple ‘5 reads or 5% of samples’ filter for calling

exon–exon junctions to avoid overfitting to our simulations. Further

investigation is needed to understand how the filter should be ad-

justed to optimize accuracy and how to account for other factors

like sequencing depth or variability in junction profiles between

samples. The filter also contributes to an ‘Nþ1’ problem: if Rail-

RNA is used to analyze N replicates, but an N þ 1th replicate arrives

later, it is difficult to analyze just the N þ 1th and produce the same

output as if the Nþ1 arrived together. These are areas for future

work, discussed further in Section S.21 and Section S.26.
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