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Abstract

Motivation: de Bruijn graphs have been proposed as a data structure to facilitate the analysis of

related whole genome sequences, in both a population and comparative genomic settings.

However, current approaches do not scale well to many genomes of large size (such as mamma-

lian genomes).

Results: In this article, we present TWOPACO, a simple and scalable low memory algorithm for the

direct construction of the compacted de Bruijn graph from a set of complete genomes. We demon-

strate that it can construct the graph for 100 simulated human genomes in less than a day and eight

real primates in< 2 h, on a typical shared-memory machine. We believe that this progress will en-

able novel biological analyses of hundreds of mammalian-sized genomes.

Availability and Implementation: Our code and data is available for download from github.com/

medvedevgroup/TwoPaCo.

Contact: ium125@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of related features across different genomes is fundamen-

tal to many areas of biology, such as pan-genome analysis and com-

parative genomics. These studies often start with a representation of

the relationship between genomes as a multiple alignment (Gusfield,

1997) or as a graph (Lee et al., 2002). With the ubiquity of cheap

sequencing, the number of genome sequences available for these

studies has expanded tremendously (Haussler et al., 2008; Jarvis

et al., 2014; Koepfli et al., 2015). The type of genomes available has

also expanded: we have whole genomes, as opposed to only genic se-

quences, and we now have many mammalian sized (�3 Gb) gen-

omes. In addition, novel long-read sequencing technologies like

Oxford Nanopore promise to make such genomes even easier to ob-

tain. Thus, we expect to have hundreds of whole mammalian gen-

ome sequences for comparison, in both the population and

comparative genomic settings. However, our current computational

ability to analyze such large datasets is, at best, limited.

A major bottleneck toward the goal of comparing hundreds of

whole mammalian genomes is scalability issues due to the problem

of repeats. Multiple alignment is a computationally hard problem

due to the presence of high copy-count repeats, which are absent in

many lower-order species but cover roughly half of a mammalian

genome. For example, the human genome contains over a million

ALU repeats. Most multiple alignment methods mask repeats due to

the computational challenge of handling them, resulting in a loss of

important features. Without masking repeats, most approaches do

not scale well to modern data, both in terms of computation time

and memory usage. A competition of whole-genome aligners dem-

onstrated that some recent tools are able to handle larger datasets;

however, these were still limited to�20 genomes of

length<200 Mb (Earl et al., 2014).
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As an alternative to multiple alignment, de Bruijn (or the closely

related A-Bruijn) graph approaches for comparing whole genome se-

quences have been proposed (Minkin et al., 2013a, b; Pham and

Pevzner, 2010; Raphael et al., 2004). de Bruijn graphs have tradition-

ally been used for de novo assembly (Miller et al., 2010; Schatz et al.,

2010), but in the case of already assembled genomes, they are built

from a few long sequences, as opposed to billions of short reads. In

the setting of population genomics, a de Bruijn graph representation

of closely related genomes can be used to discover polymorphism in a

population (Dilthey et al., 2015; Iqbal et al., 2012). In metagenomics,

the de Bruin graph was used as a reference representation for read

mapping (Wang et al., 2012; Ye and Tang, 2015) and to predict viru-

lence in bacteria (Bradley et al., 2015). In the comparative genomics

setting, a de Bruijn graph representation can be used to detect synteny

blocks (Minkin et al., 2013b; Pham and Pevzner, 2010). Other graph

representations besides the de Bruijn graph have also been proposed

(Dilthey et al., 2015; Ernst and Rahmann, 2013).

The use of de Bruijn or related graphs brings up a host of algorith-

mic questions that have been studied: how to construct those graphs

efficiently (Baier et al., 2015; Beller and Ohlebusch, 2015; Ben-Bassat

and Chor, 2014; Cazaux et al., 2014; Chikhi et al., 2014; Marcus

et al., 2014; Simpson and Durbin, 2010), how to design fast querying

indices (Beller and Ohlebusch, 2016; Holley et al., 2015; Sirén et al.,

2014), how to align read data to such graphs (Huang et al., 2013;

Limasset et al., 2016; Paten et al., 2014), and how to efficiently repre-

sent them in memory. Proposed representations of the de Bruijn graph

include succinct (Belk et al., 2016; Bowe et al., 2012), compacted

(Baier et al., 2015; Beller and Ohlebusch, 2015; Cazaux et al., 2014;

Marcus et al., 2014; Minkin et al., 2013b), and Bloom filter based

(Chikhi and Rizk, 2013; Salikhov et al., 2014).

In this article, we study the efficient construction of the compacted

de Bruijn graph. In a compacted de Bruijn graph, non-branching paths

are replaced by single edges, which results in an equivalent, but

smaller graph. The construction of such a graph is a resource intensive

step and often poses the major bottleneck in applications. There have

been recent tools to tackle the problem of efficiently constructing the

compacted graph in the whole genome sequence setting: Sibelia

(Minkin et al., 2013b), SplitMEM (Marcus et al., 2014), and the tools

of Beller and Ohlebusch (2015) and Baier et al. (2015). The fastest al-

gorithm to date was able to process seven whole mammalian genomes

in under 8 h (Baier et al., 2015). However, constructing the com-

pacted graph is still prohibitive for larger inputs.

In this article, we present TWOPACO, a novel algorithm for con-

structing the compacted de Bruijn graphs from whole genome se-

quences. We demonstrate that it can construct the graph for 100

human genomes in less than a day and eight primates in <2 h, on a

typical shared-memory machine. TWOPACO is based on the follow-

ing key insight. We start with a basic naive algorithm, which has a

prohibitively large memory usage but has the benefit that it is easily

parallelizable. We then create a two pass algorithm that uses the

naive one as a subroutine. In the first pass, we use a probabilistic

data structure to drastically reduce the size of the problem, and in

the second pass, we run the naive algorithm on the reduced problem.

One of our key design principles was to make the algorithm simple

and embarrassingly parallelizable, in order to take advantage of

multi-thread support of most shared-memory servers. We also de-

veloped a procedure that splits the input into subsets that can be

processed independently. As a result, TWOPACO can trade-off mem-

ory usage for the running time, enabling processing large datasets on

machines with small memory. The result is a simple and scalable

low memory algorithm for the direct construction of the compacted

de Bruijn graph for a set of complete genomes.

2 Preliminaries

For a string x, we denote by x½i::j� the substring from positions i to j,

inclusive of the endpoints. We say that a string x is the prefix of a

string y, if x constitutes the first jxj characters of y, where jxj is the

length of x. A string x is the suffix of a string y, if x constitutes the

last jxj characters of y. At first, we define the de Bruijn graph built

from a single string. For a string s and an integer k, we designate the

de Bruijn graph as G(s, k). Its vertex set consists of all substrings of s

of length k, called k-mers. Two vertices u and v are connected with

a directed edge u! v if s contains a substring e, jej ¼ kþ 1 such

that u is the prefix of e and v is the suffix of e. We will use terms ‘k-

mer’ and ‘vertex’ interchangeably, as well as ‘(kþ1)-mer’ and

‘edge’. For clarity of presentation, we have defined the de Bruijn

graph as a simple graph, but we in fact store it as a multi-graph.

Now we define the de Bruijn graph for multiple strings. The

union of two graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ is the graph

G1 [G2 ¼ ðV1 [ V2;E1 [ E2Þ. For a collection of strings S ¼ fs1; s2;

. . . ; sng and an integer k, the de Bruijn graph is the union

of the graphs constructed from individual strings, i.e.

GðS;kÞ ¼ Gðs1;kÞ [Gðs2; kÞ [ . . . [Gðsn;kÞ. Figure 1a shows an

example of a graph built from two strings. Recall that a path

through a graph is a sequence of adjacent vertices where the only re-

peated vertices may be the first and last one, whereas a walk can re-

peat both vertices and edges. We say that a walk or path p in the de

Bruijn graph G(S, k) spells a string t if Gðt;kÞ ¼ p. We say that a

vertex v is a bifurcation if at least one of the following holds (i) v

has more than one incoming edge and (ii) v has more than one

outgoing edge. A vertex v is a sentinel if it is a first or last k-mer of

an input string. We call a vertex a junction if it is a bifurcation, or a

sentinel, or both. The set J(s, k) is the set of positions i of the string s

such that the k-mer s½i::iþ k� 1� is a junction. For a collection of

strings S the set J(S, k) is defined analogously.

A de Bruijn graph can be compacted by collapsing non-

branching paths into single edges. More precisely a non-branching

path in an ordinary de Bruijn graph is a path u v (a path from u to

v) such that the only junction vertices on this path are possibly u or

v. The compaction of a non-branching path p ¼ u v is removal of

edges of p and replacing it with an edge u! v (the graph is output

such that for each vertex we maintain a list of its occurrences in the

(a)

(b) (c)

(d)

Fig. 1. The de Bruijn graph and its compacted version. (a) An example of an or-

dinary de Bruijn graph built from the genomes S ¼ f00TGGCACGTC 00; 00TGGCA

CTTC 00g and k¼ 2. Junctions are indicated by square vertices. (b) Graph ob-

tained after compaction. (c) The two genomes that generate the graph, with the

junction k-mers in bold; the arrows between them indicate edges in the com-

pacted graph and non-branching paths in the ordinary graph. The strings be-

tween them label the edges in the compacted graph. (d) If we store edges in a

Bloom filter, we may observe false edges (dotted line) in the ordinary graph;

this can lead to detection of false junctions, like the vertex ‘GC’ in this case
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input so that one can easy reconstruct the original path). A maximal

non-branching path is a non-branching path that cannot be ex-

tended by adding an edge. The compacted graph GcðS;kÞ is the

graph obtained from G(S, k) by compaction of all its maximal non-

branching paths. This graph is sometimes referred to as the com-

pressed graph in the literature (Beller and Ohlebusch, 2015). It is

easy to see that the vertex set of GcðS; kÞ is the set of junctions of the

graph G(S, k) and two vertices u and v of GcðS;kÞ are connected if

there is a non-branching path u v in G(S, k). Figure 1b shows an

example of a compacted de Bruijn graph. Note that a compacted

graph is a multi-graph: after compaction a pair of vertices can be

connected by edges going in the same direction that corresponded to

different paths in the ordinary graph.

Graph compaction is the first step of most algorithms working

with de Bruijn graphs, since it drastically reduces the number of ver-

tices. It can be obtained from the ordinary graph in linear time by a

simple graph traversal. However, building and storing the ordinary

graph takes lots of space, which we seek to avoid in our algorithm

by constructing the compacted graph directly.

A Bloom filter is a space efficient data structure for representing

sets that supports two operations: storing an element in the set and

checking if an element is in the set (Bloom, 1970). A Bloom filter

offers improvements in space usage but can generate false positives

during membership queries. Bloom filters have previously been suc-

cessfully applied to assembly (Chikhi and Rizk, 2013; Heo et al.,

2014; Melsted and Pritchard, 2011; Salikhov et al., 2013) and to

indexing and compression of whole genomes as well as large RNA-

seq datasets (Holley et al., 2015; Rozov et al., 2014; Solomon and

Kingsford, 2016). In particular, they have been applied to the closely

related problem of constructing and compacting a de Bruijn graph

from short read sequences. While this article addresses the whole

genome setting, we find that the Bloom filter remains useful to rep-

resent a set of k-mers.

3 Reduction to the problem of finding junction
positions

TWOPACO is based on the observation that there is a bijection be-

tween maximal non-branching paths of the de Bruijn graph and sub-

strings of the input whose junctions are exactly the two flanking k-

mers (Observation 1 below). This observation reduces the problem

of graph compaction to finding the set of junction positions J(S, k),

as follows. The vertex set of the compacted graph is the set of all k-

mers located at positions J(S, k). To construct the edges, we need to

find substrings flanked by junctions. To do this, we can traverse pos-

itions of J(S, k) in the order they appear in the input. For every two

consecutive junction positions i and j, we record an edge between

the k-mer at i and the k-mer at j. Figure 1c shows an example of

how sequences of junctions generate non-branching paths in the or-

dinary graph and edges in the compacted one.

The observation follows in a straight-forward way from the def-

initions, but we state and prove it here for completeness.

Observation 1. Let s be an input string and P be the set of max-

imal non-branching paths of the graph G(s, k). Let T be the set of

substrings of s such that each t 2 T starts and ends with a junction

of G(s, k) and does not contain junctions in between. Then there

exists a bijective function g : T ! P.

Proof. Let g be the function mapping substrings of s to walks in

G(s, k), where g maps a substring to the vertices corresponding to its

constituent k-mers. To prove that g is a bijection when restricted to

T, we have to show that it is both an injection and surjection. Note

that g is injective by construction, that is, any walk is spelled by a

unique string. To prove that it is surjective, we need to show that for

any maximal non-branching path p ¼ u v, there is a t 2 T such

that g(t)¼p. That is, p is spelled by a string in T. Since the walk g(s)

must traverse all vertices in the graph, and the internal vertices of p

have in- and out-degrees equal to one, the walk g(s) must contain p

as a subwalk. Hence, the string t spelled by p must be a substring of

s, i.e. g(t)¼p. The internal k-mers of t are non-junctions because p

is non-branching, and the first and last k-mers of t are junctions be-

cause p is maximal. Hence, t 2 T.

Generalization of the observation to the case of multiple strings

is straightforward.

4 Single round algorithm

In the previous section, we reduced the problem of constructing a com-

pacted de Bruijn graph to that of finding the locations in the genome

where junction vertices are located. We will now present our algorithm

for finding junction positions, in increasing layers of complexity. First,

we will describe Algorithm 1, which can already be used as a naive al-

gorithm to identify the junctions. However, Algorithm 1 alone has a

prohibitively large memory footprint. To address this, we will present

Algorithm 2, which uses Algorithm 1 as a subroutine but reduces the

memory requirements. In cases of very large inputs, even Algorithm 2

can exceed the available memory. In Section 5, we finally present

Algorithm 3, which addresses this limitation. It limits memory usage, at

the expense of time, by calling Algorithm 2 over several rounds. We

refer to this final algorithm (Algorithm 3) as TWOPACO.

In Algorithm 1, we start with a candidate set C of junction pos-

itions in the genomes. A set of positions C is called a candidate set if

C � JðS; kÞ and any two positions that start with the same k-mer can

be either both present or both absent from C. C is represented using

Boolean flags which mark every position of the genomes which is

present in the set. If Algorithm 1 is used naively, it would be called

with every position marked; in general, however, we can use C to

capture the fact that the unmarked positions have been previously

eliminated from consideration as junctions.

First, we store all edges of the ordinary de Bruijn graph in a set

E. We do this by a linear scan and for a (kþ1)-mer at position i in a

string S, if either of the k-mers at positions i or iþ1 are marked, we

insert the (kþ1)-mer into the set E (Lines 1–5). Second, we again

scan through the genomes and consider the k-mer v at every marked

position. We use E to check how many edges in G(S, k) enter and

leave v (Lines 9–15). Since the DNA alphabet is finite, we can do

this by merely considering all eight possible (kþ1)-mers—four

entering, and four leaving—and checking whether they are in E. If

the in- and out-degrees do not satisfy the definition of a junction, we

unmark position i; otherwise, we leave it marked.

Algorithm 1 can be used naively to find all junction positions, by

initially marking every position as a potential junction. Storing the

set E in memory, however, is infeasible for large datasets. To reduce

the space requirements, we develop the two pass Algorithm 2. In the

first pass, we run Algorithm 1, but use a Bloom filter to store the set

E instead of a hash table. A Bloom filter takes significantly less space

than a hash table; however, the downside is that it can generate false

positives during membership queries. That is, when we check if a

(kþ1)-mer is present in E (Lines 12 and 14 in Algorithm 1) we may

receive an answer that it is present, when it is in reality absent. The

effect is that the calculated in- and out-degrees may be inflated and

we may leave non-junctions marked (Line 17), see Figure 1d.

Nevertheless, the marked positions still represent a candidate set of
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junctions, since a junction will never be unmarked. Thus, running

Algorithm 1 with the Bloom filter reduces memory but does not al-

ways unmark non-junction positions. In order to eliminate these

marks, we run Algorithm 1 again, using the positions marked in the

first pass as a starting point, but this time using a hash table to store

E (Line 4 in Algorithm 2). This second pass will unmark all remain-

ing marked non-junction positions. Since the set of candidate marks

has been significantly reduced after the first pass, the memory use of

the hash table is no longer prohibitive. As with Algorithm 1,

Algorithm 2 can be used to find all junction positions by initially

marking every position as a potential junction.

Our implemented algorithms also handle the reverse comple-

mentarity of DNA, using standard techniques. We summarize this

briefly for the sake of completeness. For a string s, let �s be its reverse

complement, and define the comprehensive de Bruijn Graph as the

graph Gcompðs; kÞ ¼ Gðs; kÞ [Gð�s; kÞ; the graph for multiple strings

and the compacted graph is defined analogously. To build the com-

pacted comprehensive graph, we have to modify Algorithm 1 so that

E represents each k-mer and its reverse complement jointly. For ex-

ample, this can be done by always storing the canonical form of a

k-mer, which is the lexicographically smallest string between the

k-mer and its reverse complement (Chikhi et al., 2014). Similarly,

we have to be careful when we make membership queries to E in

Algorithm 1, so that we are always querying canonical k-mers.

5 Multiple rounds: dealing with memory
restrictions

While Algorithm 2 significantly reduces the memory usage, it is still

possible that the hash table in the second pass may not fit into the

main memory, for some very large inputs. To deal with this issue,

we develop Algorithm 3, which splits the input k-mers into ‘ parts

and runs Algorithm 2 in ‘ rounds. In each round, Algorithm 3 will

consider only approximately 1=‘ of the k-mers to check if they are

junctions. Each round processes only one part, thus decreasing

memory usage. When ‘ ¼ 1, Algorithm 3 reduces to Algorithm 2

and does not limit its memory use, but when ‘ is increased, the peak

memory usage decreases at the expense of more rounds and hence

longer running time.

Suppose that the set of k-mers is partitioned into ‘ classes

V1; . . . ;V‘. Then, in round i, our algorithm begins by marking the

positions whose k-mers are in class Vi (Line 15). Note that each pos-

ition is considered in exactly one round. We then call Algorithm 2,

which unmarks those positions which are not junctions. After all the

rounds are complete, the junction vertices are exactly those that re-

main marked (Line 17).

To obtain the partition classes Vi, we first note that the max-

imum memory usage of Algorithm 3 is minimized when the partition

leads to an equally sized hash table in every round. To achieve this,

we would like the sizes of sets Vi to be as equal as possible. We are

not concerned with obtaining an optimal partition, since a small dis-

crepancy in the memory in each round is permissible. Also note that

we must partition the k-mers, which is different from partitioning

the positions. In particular, if two different positions have the same

k-mer, they must belong to the same class; hence, we cannot simply

divide our strings into chunks.

Our idea is based on a two-step process. First, we partition the

universe of all k-mers into q� ‘ parts (e.g. q ¼ 232). This is done im-

plicitly by defining a uniform hash function f over the universe of k-

mers with range ½0;qÞ. A k-mer h belongs to part i if its hash value

f(h)¼ i. We then obtain the number of input k-mers that belong to

Algorithm 1. Filter-Junctions

Input: strings S ¼ fs1; . . . ; sng, integer k, and an empty set data structure E. A candidate set of marked junction positions C � JðS;kÞ
is also given. When the algorithm is run naively, all the positions would be marked.

Output: a reduced candidate set of junction positions.

1: for s 2 S do

2: for 1 � i < jsj � k do

3: if C½s; i� ¼ marked then " Insert the two (kþ1)-mers containing the k-mer at i into E.

4: Insert s½i::iþ k� into E.

5: Insert s½i� 1::i� 1þ k� into E.

6: for s 2 S do

7: for 1 � i < jsj � k do

8: if C½s; i� ¼ marked and s½i::iþ k� 1� is not a sentinel then

9: in 0 " Number of entering edges

10: out 0 " Number of leaving edges

11: for c 2 fA;C;G;Tg do " Consider possible edges and count how many of them exist

12: if v � c 2 E then " The symbol � depicts string concatenation

13: out out þ 1

14: if c � v 2 E then

15: in inþ 1

16: if in¼1 and out¼1 then " If the k-mer at i is not a junction.

17: C½s; i�  Unmarked

18: return C

Algorithm 2. Filter-Junctions-Two-Pass

Input: strings S ¼ fs1; . . . ; sng, integer k, a candidate set

of junction positions Cin, integer b

Output: a candidate set of junction positions Cout

1: F an empty Bloom filter of size b

2: Ctemp  Filter� JunctionsðS; k; F;CinÞ " The first pass

3: H  an empty hash table

4: Cout  Filter� JunctionsðS; k;H;CtempÞ "The second pass

5: return Cout
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each part, c0; . . . ; cq�1, as follows (Lines 1–8). We make a pass

through the input and use a Bloom filter to store all the k-mers. For

every k-mer, if it is not already present in the Bloom filter, we increase

the corresponding counter. This way, we try to count only unique k-

mers, though the count can be slightly inflated by false positives. Due

to the heuristic nature of our partitioning process, we can tolerate

slightly inaccurate counts. Notice that the partition defined by f is not

necessarily balanced when applied to the input k-mers, i.e. there might

be a big difference between ci and cj, for some i and j. However, this

initial partition is much more fine grained then we need, which makes

it a useful starting point.

Second, we obtain our desired partition into V1; . . . ;V‘ by

agglomerating consecutive parts of our fine-grained partition.

Specifically, we implicitly define V1; . . . ;V‘ using a sequence of inte-

gers 0 ¼ p0 � p1 � � � � � p‘�1 � p‘ ¼ q, where a k-mer h belongs

to Vi if pi�1 � f ðhÞ < pi. To find a sequence p0; . . . ; p‘ that would

create a balanced partition, we use a greedy heuristic (Lines 10–12).

It makes a linear scan through the counts c0; . . . ; cq�1, and fills the

current partition with as many k-mers as possible, until the number

of k-mers exceeds the 1=‘ of the total k-mers.

6 Parallelization scheme

We designed our algorithm so that it can be effectively parallelized

on a multi-processor shared memory machine. The bulk of the com-

putation happens in Algorithm 1, which consists of two parts. Each

part is a loop over all the positions in the input, Lines 1–5 in the first

part and Lines 6–17 in the second. The first loop is embarrassingly

parallelizable as long as the data structure representing the set E

supports concurrent writes. We use a lock-free Bloom filter when

Algorithm 1 is called during the first pass of Algorithm 2, and a con-

current hash table when it is called during the second pass. The se-

cond loop is trivially parallelizable: threads will get non-overlapping

portion of genomes, hence the synchronization on C is not needed.

A synchronization barrier separates the two loops. The compacted

edge generation step that we discussed in the Section 3 is embarrass-

ingly parallelizable as well.

We implement the parallelization using the standard single pro-

ducer/multiple consumer pattern (Oaks and Wong, 2004).

According to this design pattern, we create (i) a single reader thread

that splits the input into equal sized substrings and puts them into

worker queues and (ii) many worker threads that dequeue and pro-

cess the substrings. We utilized parallel programming primitives

from the Intel’s Threading Building Blocks library (Reinders, 2007).

Note that this way we store only part of the input and the corres-

ponding array C in the input to save memory.

7 Theoretical analysis and comparison

In this section, we will analyze the running time and memory usage

of our algorithm, and compare it with that of other algorithms.

Suppose that the de Bruijn graph G(S, k) has E edges, J junctions

and L non-junctions that we call links. First, we will analyze the

number of false positive junctions. A false positive junction is a link

whose positions in S are incorrectly left marked at the end of the first

pass. We assign an indicator variable I‘ to each link ‘; I‘ ¼ 1 if the

link ‘ is a false positive junction and I‘ ¼ 0 otherwise. This way, the

total number of false positive junctions is FP ¼
P

1� ‘�L I‘. Let the

probability that a link is a false positive junction be p. By linearity of

expectation, we have E½FP� ¼ E½
P

1� ‘�L I‘� ¼ Lp. To calculate the

probability p, note that each link has exactly one incoming and one

outgoing true edge. Hence, querying the Bloom filter in Line 12 and

Line 14 of Algorithm 1 may discover at most six false edges: three

incoming and three outgoing ones. At least one false positive from

those six queries results in the link misclassified as a junction.

Mitzenmacher and Upfal (2005) show that the probability of a sin-

gle false positive resulting from querying a Bloom filter is

q ¼ ð1� e�hE=bÞh. where h is the number of hash functions used

by the Bloom filter and b is the number of bits in the filter.

Assuming that queries are independent, p ¼ 1� ð1� qÞ6 ¼
1� ð1� ð1� ehE=bÞhÞ6.

Now we will analyze the running time. Let m be the total length

of the input strings. First, note that storing and querying k-mers

with the Bloom filter requires calculation of h hash values for each

Algorithm 3. TWOPACO

Input: strings S ¼ fs1; . . . ; sng, integer k, integer ‘, integer b

Output: the compacted de Bruijn graph GcðS;kÞ
1: Initialize counters c0; . . . ; cq�1 to zeroes

2: F an empty Bloom filter of size b

3: for s 2 S do

4: for 1 � i � jsj � kþ 1 do

5: h s½i::iþ k� 1�
6: if h not in F then

7: Insert h into F

8: cf ðhÞ  cf ðhÞ þ 1

9: T  
P

0� t<q ct=‘ " Mean number of k-mers per partition

10: p0  0; p‘  q

11: for 1 � i < ‘ do

12: pi  biggest integer larger than pi�1 such that ð
P

pi�1 � j< pi
cjÞ � T, or minf‘; pi�1 þ 1g if it does not exist.

13: Cinit  Boolean array with every position unmarked

14: for 1 � i � ‘ do

15: Ci  mark every position of Cinit that starts a k-mer h with hash value pi�1 � f ðhÞ < pi

16: C0i  Filter� Junctions� Two� PassðS;k;b;CiÞ
17: Cfinal ¼ [C0i
18: return Graph implied by Cfinal, as described in Section 3.
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operation. We use a family of sliding window hash functions,

so both filling and querying the Bloom filter in the first pass takes

OðmhÞ operations. In the second pass the algorithm employs a hash

table to store and query (kþ1)-mers. Denote by M the number of

marks left in the array C after the first pass. The expected running

time is then OðmhþMkÞ, since each hash table operation takes k

time and there are O(M) operations total. To calculate M, let us as-

sume that the average number of times a false positive junction

occurs in all the input strings is given by r. Then, the expected value

of M is jGcj þ Lpr, where jGcj is the number of edges in the com-

pacted de Bruijn multi-graph. The expected running time is then

Oðmhþ ðjGcj þ LprÞkÞ
To calculate the memory usage, note that the first pass allocates

b bits of memory for the Bloom filter and the second pass uses a

hash table that contains at most 8ðJ þ FPÞ elements. Hence, the ex-

pected memory usage is Oðmax½b; ðJ þ LpÞk�Þ. The array C of marks

is accessed sequentially by the algorithm and can be stored in the ex-

ternal memory without loss of performance. As discussed in Section

6, at each moment the memory contains only a constant amount of

characters of the input strings, so the input length does not contrib-

ute to the asymptotic bound.

Table 1 contains asymptotic upper bounds on memory usage and

running times of different algorithms for constructing the compacted

de Bruijn graph from multiple complete genomes. The performance of

TWOPACO depends highly on the number of junctions present. On

practical instances of related genomes datasets, there is a lot of shared

sequence and the number of junctions is low. Unlike other algorithms,

our expected memory usage depends only on the structure of the in-

put, but not directly on its size. At the same time, dependence on k

makes TWOPACO less applicable in case of very large k.

8 Results

To evaluate the performance of TWOPACO, we conducted several ex-

periments. We compared its running time and memory footprint

with other available implementations of de Bruijn graph compaction

algorithms. We then ran TWOPACO on a real dataset of biological

interest as well as a large dataset of simulated data. We assessed the

parallel scalability of our implementation and capabilities of run-

ning the algorithm on machines with limited memory using the

round splitting procedure Finally, we evaluated the effects of input

length and structure on the running time and memory usage.

First, we benchmarked TWOPACO against Sibelia (Minkin et al.,

2013b), SplitMEM (Marcus et al., 2014) and the bwt-based algorithm

of Baier et al. (2015), using default parameters. As far as we under-

stood, the algorithm in Beller and Ohlebusch (2015) was subsumed

by Baier et al. (2015). There were two important caveats. First, in

most genomics application, it is necessary to account for both strands

in the de Bruijn graph. To make SplitMem and bwt-based work with

both strands, we appended the reverse complements of the sequences

to the input, as suggested by their authors. In our results, we show

SplitMEM and the bwt-based in two versions: (i) considering only

one strand and (ii) considering both strands. Second, both minia and

Sibelia not only constructs the compacted graph but also modifies it

after construction. We therefore ran these tools only in the mode

where they construct the graph only (contrary to the bechmarks in

Marcus et al., 2014). In addition to whole genome tools, one can also

apply tools from genome assembly to construct the compacted graph.

In this case, one would run a k-mer counter on the genomes, and then

run a graph compaction tool on the resulting k-mers. Note that graph

compaction algorithms that start with a set of k-mers must build non-

branching paths by combining appropriate k-mers, while in the whole

genome setting the non-branching paths are contained in the input

(per 1). We tested how well these pipelines would compare against

specialized approaches for whole genomes. We tried two pipelines:

minia 2.0.3 (Chikhi and Rizk, 2013) and the DSK 2.1.0 k-mer coun-

ter (Rizk et al., 2013) followed by BCALM (Chikhi et al., 2014) (a

new version of BCALM that allows parallelism was very recently pub-

lished but was not available at the time of writing, Chikhi et al.,

2016). We allowed them to use the maximum memory. Although

minia has some parallelism, its graph compaction implementation is

single-threaded. We allowed minia and DSK to use all 15 threads.

BCALM is single-threaded. Supplementary material for the article

contains the exact command lines that we used for benchmarking.

For benchmarking purposes, we used the following datasets: (i)

62 Escherichiacoli genomes (310 Mb) from Marcus et al. (2014)

and (ii) seven human genomes (�21 Gb) used by Baier et al. (2015)

which includes five different assemblies of the human reference gen-

ome and two paternal haplotypes of NA12878 (see Baier et al.

(2015) for more details). We ran our experiments on the highest

memory Amazon EC2 instance (r3.8xlarge): a server with 32 Intel

Xeon E5-2670 processors and 244 GB of RAM. We set the default

number of internal hash functions in the Bloom filters to four. We

also verified the correctness of TWOPACO by comparing its output to

that of a naive compaction algorithm on feasible test cases. A direct

comparison to the output of other tools is impractical since each al-

gorithm handles edges cases differently (e.g. the presence of undeter-

mined nucleotides (Ns) in the input).

The results are shown in the first four rows of Table 2. For seven

human genomes, TWOPACO was at least 7 times faster than the se-

cond best algorithm, when we used 15 threads. When only a single

thread was used, TWOPACO was still slightly better than the second

best DSKþBCALM for k¼25, and 2.5–3.4 times faster than the se-

cond best bwt-based on k¼100.

We also assessed TWOPACO’s ability to handle (i) large numbers of

long closely-related genomes and (ii) more divergent genomes. To do

so, we generated 93 human genomes using the FIGG genome simula-

tor (Killcoyne and del Sol, 2014) and ‘normal’ simulation parameters.

The FIGG genome simulator generates complete sequences based on

a reference genome and variations’ frequencies extracted from the

datasets from projects like 1000 Genomes Project Consortium et al.

(2010) and Gibbs et al. (2003). The mutations comprise single-

nucleotide alterations as well as indels and structural variations of

larger size. We ran TWOPACO on two datasets: (i) 43 simulated gen-

omes plus the seven used in Table 2 and (ii) 93 simulated human gen-

omes plus the seven. The results are shown in the last five rows of

Table 2. We construct the graph for 100 human genomes in 23 h

using 77 GB of RAM and 15 threads. For eight primates, we used

under 2 h and 34–62 GB of RAM on 15 threads.

Table 1. Running times and memory consumption of different algo-

rithms for constructing the de Bruijn graph from multiple complete

genomes

Algorithm Running time Memory

Sibelia O(m) O(m)

SplitMEM Oðm log gÞ Oðmþ jGcjÞ
bwt-baseda O(m) O(m)

TWOPACO Oðmhþ ðjGcj þ LprÞkÞ Oðmax½b; ðJ þ LpÞk�Þ

Note: For SplitMEM g stands for the size of the largest genome in the in-

put. An explanation of other variables is given in the Section 7.
aBaier et al. (2015).
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To measure the parallel scalability of TWOPACO, we fixed a data-

set consisting of five simulated human genomes. Figure 2 shows scal-

ing results for 1–32 worker threads. The first pass of Algorithm 2,

and the conversion of junction vertices to the graph (as described in

Section 3), scale almost linearly up to 16 threads. The second pass

does not scale past four worker threads, due to what we believe is

the limited parallel performance of the concurrent hash table, which

we plan to improve in the future.

Next, we evaluated the performance of TWOPACO under memory

restrictions. For each run, we set a different memory threshold and

checked how many rounds were necessary so that TWOPACO did not

exceed the threshold (Table 3). This experiment illustrates that

TWOPACO is capable of constructing the compacted graph for a

dataset of five human genomes under memory restrictions commen-

surate with a low-end laptop.

For the benchmarks and real datasets in the experiments above,

we recorded the number of marks that Algorithm 2 left in the array

C after each stage (Table 4). We did not record those numbers for

the larger datasets due to the associated cost restrictions of re-

running the larger experiments.

Our last experiment assessed the effects of the input size and struc-

ture (number of junctions and number of distinct k-mers) on running

time and memory consumption (Fig. 3). As expected from the theoret-

ical analysis, the running time depends both on the input size and

structure, while memory consumption depends only on structure. For

example, consider the dataset from Baier et al. (2015), which has

highly similar genomes. As a result, the number of distinct k-mers and

junctions is nearly constant even as the number of genomes increases.

This dataset has the lowest running time, and the amount of memory

TWOPACO uses does not increase with the number of genomes. Unlike

the memory usage, the running time does see a dominant effect of the

input size, as the running time increases with the number of genomes

for this dataset. On the other hand, consider the primates dataset,

which is more variable and contains more distinct k-mers and junc-

tions than the simulated human dataset. As a result, TWOPACO takes a

longer time and has larger memory consumption.

9 Conclusion

In this article, we gave an efficient algorithm for constructing the

compacted de Bruijn graph for a collection of complete genomic

sequences. It is based on identifying the positions of the genome

which correspond to vertices of the compacted graph. TWOPACO

works by narrowing down the set of candidates using a probabilistic

data structure, in order to make the deterministic memory-intensive

approach feasible. We note that the effectiveness of the algorithm

relies on having whole genome sequences, making it inapplicable to

the case when genomes are represented as shorts read fragments.

Parallel speedup of the second pass of Algorithm 2 is an important

direction of the future work that we are going to pursue.

A critical parameter of the TWOPACO is the size of the Bloom fil-

ter (b). We recommend the user to set b to be the maximum memory

they wish to allocate to the algorithm. If the memory usage then ex-

ceeds b (which would happen due to the size of the hash table), then

the number of rounds should be increased until the memory usage

falls below b. In future work, we plan to implement an algorithm to

automatically select a value of b that would minimize the maximum

memory used by the algorithm. We also plan to automate the choice

of the number of rounds, given a desired memory limit.

Table 2. Benchmarking comparisons

DSKþBCALM Minia Sibelia SplitMem bwt-based from Baier et al. (2015) TWOPACO

Single strand Single strand Both strands 1 thread 15 threads

62 E.coli (k ¼ 25) 6 (1.57) 151 (0.9) 10 (12.2) 70 (178.0) 8 (0.85) 12 (1.7) 4 (0.16) 2 (0.39)

62 E.coli (k ¼ 100) 13 (2.50) 114 (1.9) 8 (7.6) 67 (178.0) 8 (0.50) 12 (1.0) 4 (0.19) 2 (0.39)

7 humans (k ¼ 25) 444 (22.44) 968 (48.09) – – 867 (100.30) 1605 (209.88) 436 (4.40) 63 (4.84)

7 humans (k ¼ 100) 1347 (221.65) 1857 (222.0) – – 807 (46.02) 1080 (92.26) 317 (8.42) 57 (8.75)

8 primates (k ¼ 25) 2088 (85.62) – – – – – 914 (34.36) 111 (34.36)

8 primates (k ¼ 100) – – – – – – 756 (56.06) 101 (61.68)

(43þ 7) humans (k ¼ 25) – – – – – – 705 (69.77)

(43þ 7) humans (k ¼ 100) – – – – – – 927 (70.21)

(93þ 7) humans (k ¼ 25) – – – – – – 1383 (77.42)

Note: Each cell shows the running time in minutes and the memory usage in parenthesis in gigabytes. TWOPACO was run using just one round, with a Bloom fil-

ter size b¼ 0.13 GB for E.coli, 4.3 GB for 7 humans with k¼ 25, b¼ 8.6 GB with k¼ 100, b¼ 34 GB for primates, and b¼ 69 GB for (43þ 7) and larger human

dataset. A dash in the SplitMem and bwt-based columns indicates that they ran out of memory, a dash in the Sibelia column indicates that it could not be run on

such large inputs, a dash in the minia column indicates that it did not finish in 48 h, a dash in the BCALM column indicates that it ran out of disk space (4 TB). A

double dash indicates that the software had a segmentation fault. An empty slot indicates that the experiment was not done.

Fig. 2. Parallel speedup of the different parts of TWOPACO. Edge constructions

refers to the conversion of junction positions to the compacted graph, as

described in Section 3. The Bloom filter was 8.58 GB and used eight internal

hash functions. We set k¼25
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The algorithm can also be used to construct a partially compacted

graph by omitting the second pass of Algorithm 2. A partially com-

pacted graph is one where some, but not necessarily all, of the non-

branching paths have been compacted. Partially compacted graphs are

faster to construct and can be useful in applications when the size of

the graph is not critical or full compaction takes too much resources.

TWOPACO makes significant progress in extending the number

and size of genomes from which a compacted de Bruijn graph can be

constructed. We believe that this progress will enable novel biological

analyses of mammalian-sized genomes. In this article, we focus on the

graph compaction algorithm only, and present a detailed analysis of

its performance, both theoretical and experimental. However, future

applications of the compacted de Bruijn graph is an exciting and im-

portant question. The de Bruijn graph can be the core of a tool to an-

swer biological questions, however, such a tool must not only

construct the graph but implement additional algorithms to analyze

it. For example, the synteny block reconstruction tool Sibelia (Minkin

et al., 2013b) not only builds the compacted de Bruijn graph but also

performs iterative graph simplification while increasing the value of

k. Another very recent example is the use of the de Bruijn graph to

construct the Burrows-Wheeler transform of many complete genomes

(Liu et al., 2016). TWOPACO can also be useful in other applications,

such as the representation of multiple reference genomes or variants

between genomes. See Marschall et al. (2016) for a detailed discus-

sion of applications of the de Bruijn graph in computational pan-

genomics. Similar efforts are under way in the GA4GH technical

group. TWOPACO could be particularly useful on poorly assembled

draft genomes, whose accurate alignment is especially challenging.

Table 3. The minimal number of rounds it takes for TWOPACO to

compress the graph without exceeding a given memory threshold,

using five simulated human genomes

Memory

threshold

Used

memory

Bloom

filter size

Running

time

Rounds

10 8.62 8.59 259 1

8 6.73 4.29 434 3

6 5.98 4.29 539 4

4 3.51 2.14 665 6

Note: Memory quantities are in gigabytes and running times are in mi-

nutes. It was carried out on a machine with a Intel Xeon E7-8837 processor.

We used k¼ 25 and ran the computation with eight worker threads. In each

run, we used the largest possible Bloom filter size that fitted a given restriction

(in our implementation the number of bits it has to be a power of two).

Table 4. Number of marks in the array C initially and after each

pass of Algorithm 2

Dataset Initially

(total positions)

First pass Second pass

62 E.coli (k¼25) 310 157 564 24 649 489 24 572 562

62 E.coli (k¼100) 310 157 489 22 848 018 9 492 091

7 humans (k¼25) 21 201 290 922 3 489 946 013 2 974 098 154

7 humans (k ¼ 100Þ 21 201 290 847 1 374 287 870 188 224 214

8 primates (k¼25) 24 540 556 921 5 423 003 377 5 401 587 503

8 primates (k¼100) 24 540 556 846 1 174 160 336 502 441 107

(a) (b)

(c) (d)

Fig. 3. Effects of the input length and structure on the memory and running time. Here we varied the number of input genomes from one to seven and recorded

the running time (a) and memory usage (b). We also calculated the number of distinct k-mers (c) and junctions (d) in the input to illustrate their effect on the algo-

rithm’s performance. We used three datasets: simulated humans, primates, and seven human assemblies from Baier et al. (2015). The experiment was performed

on a machine with a Intel Xeon E7-8837 processor. We used k¼25 and ran the computation with eight worker threads and a single round. For each run, we used

the optimal Bloom filter size, i.e. the filter size that minimizes the maximum memory consumption. The number of distinct k-mers was computed using the KMC2

k-mer counter Deorowicz et al. (2015). In our implementation, the number of bits in the Bloom filter has to be a power of two, which leads to the non-smooth

growth of the memory curve in (b)
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