
Sequence analysis

SeqLib: a C 11 API for rapid BAM manipulation,

sequence alignment and sequence assembly

Jeremiah Wala1,2,3 and Rameen Beroukhim1,2,3,*

1The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, 2Bioinformatics and Integrative Genomics,

Harvard University, Cambridge, MA 02138, USA and 3Department of Cancer Biology, Dana-Farber Cancer Institute,

Boston, MA 02115, USA

*To whom correspondence should be addressed.

Associate editor: Inanc Birol

Received and revised on October 7, 2016; editorial decision on November 16, 2016; accepted on November 18, 2016

Abstract

We present SeqLib, a CþþAPI and command line tool that provides a rapid and user-friendly inter-

face to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly.

Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT

for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indi-

cates that SeqLib has lower CPU and memory requirements than leading Cþþ sequence analysis

APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and as-

semble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional

capabilities, including chromosome-aware interval queries and read plotting. Command line tools

are available for performing integrated error correction, micro-assemblies and alignment.

Availability and Implementation: SeqLib is available on Linux and OSX for the Cþþ98 standard

and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional

capabilities for BLAT alignment are available under the BLAT license.

Contact: jwala@broadinstitue.org; rameen@broadinstitute.org

1 Introduction

Extracting signals from sequencing data typically requires some

combination of three core operations: sequence access (reading and

writing), sequence alignment (or re-alignment) and sequence assem-

bly. The accuracy of these operations is critical to many sequence

analysis methods, and typically comprises the bulk of the computa-

tional requirements. In practice, these operations are often split

among several tools, with connections between them requiring sep-

arate connectors and heavy reading and writing from disk. An im-

proved solution would integrate these core operations into a single

framework, allowing rapid manipulations of sequencing data in any

form without additional CPU, disk or memory overhead. Such an

approach would also facilitate the development of more advanced

tools that could integrate alignment or assembly without requiring

extensive knowledge of the implementations of each.

Although a number of APIs are available for manipulating

sequencing data, there is still a need for an integrated library capable

of all three core sequence analysis operations. Notable packages for

accessing sequencing data and/or performing local sequence align-

ment include Pysam (github.com/pysam-developers/pysam) for

Python, Rsamtools for R (Morgan, 2016) and Htsjdk (github.com/

samtools/htsjdk) for Java. For the Cþþ developer, BamTools

(Barnett et al., 2011) and SeqAn (Döring et al., 2008) have been

indispensible for hundreds of bioinformatics projects.

We present SeqLib, a Cþþ API and command line tool that inte-

grates sequence access, global/local sequence alignment, and se-

quence assembly into a single library. We highlight two distinct

advantages of SeqLib over existing Cþþ sequence analysis APIs: (1)

improved computational and memory performance for BAM/

CRAM/SAM reading and writing through our integration with

HTSlib (github.com/samtools/htslib), and (2) in-memory access to

BWA-MEM (Li, 2015a) and BLAT (Kent, 2002) for sequence align-

ment and to Fermi (Li, 2012) for error correction and sequence

assembly. By integrating with existing and widely supported C

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 751

Bioinformatics, 33(5), 2017, 751–753

doi: 10.1093/bioinformatics/btw741

Advance Access Publication Date: 16 December 2016

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/5/751/2571356 by guest on 20 April 2024

Deleted Text: i
Deleted Text: 1 INTRODUCTION
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: I
Deleted Text:
http://www.oxfordjournals.org/

projects, SeqLib naturally incorporates future advancements with-

out requiring new development by the end-user. SeqLib also inte-

grates additional capabilities, including a chromosome-aware

interval tree (github.com/ekg/intervaltree), an API for read filtering

(Wala et al., 2016) and lightweight sequence alignment plots.

SeqLib is designed to be simple to use, allowing developers to focus

on novel bioinformatics and scientific solutions rather than on soft-

ware optimization and memory management.

2 Features and methods

Core functionality and implementing classes are listed in Table 1.

BAM/SAM/CRAM access
SeqLib supports BAM, SAM and CRAM files for reading and writ-

ing, as well as streaming with standard input and output.

Simultaneous streaming from multiple coordinate-sorted files is also

supported. Alignment records are stored internally using a max-

imally compact format provided by HTSlib, which compresses se-

quences into 4-bits per base pair. The operations on SAM records

provided in SeqLib directly modify this compact structure, providing

a low memory footprint and native integration with other HTSlib

functions. Memory allocation/deallocation is handled internally by

the API.

Sequence alignment and assembly
BWA-MEM and BLAT provide the core operations for sequence

alignments in SeqLib. In addition to in-memory global alignments to

a reference genome, SeqLib provides for BWA indexing and queries

on run-time generated sequences, such as assembled contigs. Run-

time indexing operations are particularly useful for local sequence

alignments to newly generated target sequences, where traditional

dynamic programming approaches can be slow.

Sequence assemblies in SeqLib are available through direct access

to Fermi string graph assemblies. Bloom filter-based sequence error

correction using BFC (Li, 2015b) is available as part of the assembly

process or as a stand-alone unit. We provide here an example of

how assembly with Fermi can be combined with sequence access

and sequence alignment with BWA-MEM to create a local-assembly

and realignment tool with minimal code:

BamReader br;

br.Open(“in1.cram”); //open a CRAM file

BamRecord r;

FermiAssembler f; //create a Fermi assembler

while(br.GetNextRecord(r))//import reads

f.AddRecord(r); //add read to assembler

f.CorrectReads(); //error correct with BFC

f.PerformAssembly(); //assemble with Fermi

BWAWrapper b; //create a bwa aligner

b.LoadIndex(“hg19.fa”); //load reference genome

BamRecordVector results; //store contig

alignments

for (auto& i: f.GetContigs())

b.AlignSequence(i.name, i.seq, results);//align

Command line tool
SeqLib provides a command-line tool for performing combinations

of targeted assemblies, error correction and BWA-MEM realign-

ments. For instance, assembly and contig alignment of variant sites

from a VCF or BED file can be accomplished with a single com-

mand, or as part of a chain of piped operations.

3 Results and discussion

We compared the memory and computational performance of

SeqLib to SeqAn and BamTools by reading and storing 5 million

101 base-pair reads from a BAM file (Table 2). We further tested

against the BamTools ‘core’ option, which only loads non-string

data, and SeqLib with an additional decompression of the 4 bit com-

pressed sequence into a Cþþ string. SeqLib showed improved com-

putational and memory performance, and was able to access 5

million reads in under 20 s. All three APIs required fewer than 10

lines of code each to implement this test. Each API was able to ran-

domly access 1000 regions in a BAM file in a similar time (SeqLib:

10.4 s, BamTools: 13.3 s, SeqAn: 9.3 s).

To evaluate the performance of SeqLib in a more complex envir-

onment, we re-built FreeBayes (Garrison and Marth, 2012) to use

SeqLib. On a 1 Gb BAM, the SeqLib and original versions of

FreeBayes each reported identical variants. The runtime for the ori-

ginal FreeBayes was 1249 s versus 344 s for the SeqLib version. The

SeqLib version of FreeBayes also gained support for CRAM files.

By combining some of the most widely used and trusted sequence

access, alignment and assembly tools into a single API, we provide

an intuitive and powerful framework for developing efficient and

integrated bioinformatics tools in Cþþ. Full documentation, unit

testing and a number of example use-cases are available at: https://

github.com/walaj/SeqLib.

Acknowledgements

We would like to thank Heng Li for helpful comments and as the primary

developer of BWA-MEM, HTSlib, Fermi and BFC, Jim Kent as the de-

veloper of BLAT, Erik Garrison for his interval tree implementation

and Steve Huang and Steve Schumacher for comments and suggestions to

the code.

Table 1. SeqLib capabilities and implementing Cþþ class

Capability Class

Multi BAM/CRAM/SAM read BamReader

BAM/CRAM/SAM write BamWriter

SAM record and operations BamRecord

Reference genome queries RefGenome

BWA-MEM indexing/alignment BWAWrapper

BLAT alignment BLATWrapper

Bloom filter error correction (BFC) BFC

Assembly and error correction FermiAssembler

Multi-criteria read filtering ReadFilter

ASCII alignment plotting SeqPlot

Interval queries and operations GenomicRegionCollection

Table 2. Memory and computational performance for reading and

storing 5 million 101 base pair reads

Method Memory (Gb) CPU (s)

SeqLib 3.15 11.77

SeqLib (with string data) 3.86 14.33

BamTools 6.93 17.52

BamTools (with string data) 13.32 48.74

SeqAn 8.35 92.39

SeqLib and BamTools both have an optional step to decompress the se-

quence data into a full Cþþ string as needed.

752 J.Wala and R.Beroukhim

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/5/751/2571356 by guest on 20 April 2024

Deleted Text: f
Deleted Text: 2 FEATURES AND METHODS
Deleted Text: ,
Deleted Text: r
Deleted Text: 3 RESULTS AND DISCUSSION
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: econds
Deleted Text: econds,
Deleted Text: econds
https://github.com/walaj/SeqLib
https://github.com/walaj/SeqLib

Funding

National Institutes of Health (T32 HG002295/HG/NHGRI, U54CA143798

and R01CA188228), DFCI-Novartis Drug Discovery Program, and the Cure

Starts Now Foundation.

Conflict of interest: none declared.

References

Barnett,D. et al. (2011) BamTools: a Cþþ API and toolkit for analyzing and

managing BAM files. Bioinformatics, 27, 1691–1692.

Döring,A. et al. (2008) SeqAn An efficient, generic Cþþ library for sequence

analysis. BMC Bioinformatics, 9, 11–19.

Garrison,E. and Marth,G. (2012) Haplotype-based variant detection from

short-read sequencing. arXiv, q-bio.GN.

Kent,W. (2002) BLAT–the BLAST-like alignment tool. Genome Res., 12,

656–664.

Li,H. (2015a) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv, 1–3.

Li,H. (2015b) BFC: correcting Illumina sequencing errors. Bioinformatics, 31,

2885–2887.

Li,H. (2012) Exploring single-sample SNP and INDEL calling with whole-

genome de novo assembly. Bioinformatics, 28, 1838–1844.

Wala,J. et al. (2016) VariantBam: filtering and profiling of next-

generational sequencing data using region-specific rules. Bioinformatics,

32, 2029–2031.

Morgan,M. et al. (2016). Rsamtools: Binary alignment (BAM), FASTA, vari-

ant call (BCF), and tabix file import. R package version 1.24.0, bioconduc

tor.org/packages/release/bioc/html/Rsamtools.html.

SeqLib: a Cþþ API and command line tool 753

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/5/751/2571356 by guest on 20 April 2024

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

	btw741-TF1

