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ABSTRACT

Summary: Here, we report the development of SOCS (short
oligonucleotide color space), a program designed for efficient and
flexible mapping of Applied Biosystems SOLiD sequence data
onto a reference genome. SOCS performs its mapping within the
context of ‘color space’, and it maximizes usable data by allowing
a user-specified number of mismatches. Sequence census functions
facilitate a variety of functional genomics applications, including
transcriptome mapping and profiling, as well as ChIP-Seq.
Availability: Executables, source code, and sample data are
available at http://socs.biology.gatech.edu/
Contact: nickbergman@gatech.edu
Supplementary information: Supplementary data are available at
Bioinformatics Online.

Recent advances in DNA sequencing technology have made it
possible to collect sequence data on a much larger scale than in
previous years, and several sequencing platforms are now capable
of generating >1 Gb of sequence data in a single run. Although
de novo genome sequencing with these systems remains a challenge
because of difficulties in assembling short reads, their extremely
high throughput makes next-generation sequencing methods an
increasingly attractive option for a variety of functional genomics
applications, including transcriptome profiling, global identification
of protein–DNA interactions and single nucleotide polymorphism
(SNP) discovery. Several recent studies have demonstrated the
feasibility and advantages of a sequencing-based approach to these
applications (Johnson et al., 2007; Nagalakshmi et al., 2008; Torres
et al., 2008; Wilhelm et al., 2008). Although there are computational
challenges in dealing with the massive volumes of data produced
by these systems (chiefly in mapping individual sequence reads to
a reference genome), there has been significant progress made in
these areas as well (Li et al., 2008; Smith et al., 2008), and overall
it appears that high-throughput sequencing will be an increasingly
powerful option for functional genomics.

One of the newest next-generation sequencing platforms is
the Applied Biosystems SOLiD system. This platform generates
significantly more sequence data than previously described
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systems—6 or more Gb per run, in 25–35 nt reads—and uses a
unique ligation-mediated sequencing strategy that is less prone
to some of the problems that have been associated with high-
throughput sequencing-by-synthesis strategies, such as inaccurate
recording of homopolymer sequences (Shendure et al., 2005, see
Applied Biosystems website for a complete description of the
platform). In addition, the SOLiD system uses a two-base encoding
scheme in which each data point represents two adjacent bases,
and each base is interrogated twice, which helps in discriminating
between sequencing errors and true polymorphisms. Collectively,
these attributes make the SOLiD sequencing system particularly well
suited to a variety of functional genomics applications.

In contrast to other sequencing systems, SOLiD data are not
collected directly as DNA sequences, but instead are recorded in
‘color space’, in which the individual values (colors) within a
read provide information about (but not a definite identification
of) two adjacent bases. Without a decoding step, in which color
data are converted to sequence data, they cannot be mapped to
a reference genome using conventional alignment tools. Direct
conversion of color data to sequence data, however, has a significant
drawback—reads that contain sequencing errors cannot be converted
accurately (in translating a color space string, all bases after a
sequencing error will be translated incorrectly). Given this, there
is a clear incentive to map sequence reads to a reference genome
within color space, and there have been several software tools
developed recently to perform this task [e.g. MAQ (http://maq.
sourceforge.net/), Shrimp (http://compbio.cs.toronto .edu/shrimp/),
Mosaik (http://bioinformatics.bc.edu/marthlab /Mosaik), as well as
ABI’s SOLiD Alignment Browser].

One of the challenges facing these alignment tools is that the
ABI SOLiD system, like other ultra high-throughput short read
sequencing systems, has an error rate that is significantly higher
than traditional Sanger sequencing, and sequence reads containing
one or more mismatches relative to the reference genome are very
common in SOLiD datasets. These reads are much more difficult to
map than reads that match the reference exactly, and because of this,
existing tools generally only map reads that have ≤3 mismatches
relative to the reference genome. This allows for rapid runtimes, but
also leaves a sizable fraction (>50% in some cases) of each dataset
unused. Since much of these remaining data can be unambiguously
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Applied Biosystems SOLiD sequence data

Table 1. Performance of SOCS in mapping SOLiD sequence data

Mismatch Time required Number of additional reads
tolerance mapped (percentage)

0 10.3 min 4 004 404 (14.3%)
1 11.9 min 4 664 183 (16.7%, 31.0% total)
2 15.7 min 3 583 141 (12.8%, 43.8% total)
3 35.4 min 2 706 247 (9.7%, 53.5% total)
4 3.5 h 2 054 061 (7.4%, 60.9% total)
5 22.1 h 1 594 608 (5.7%, 66.6% total)

SOCS was tested using a sample dataset containing 27 942 602 35-bp reads generated
by the SOLiD sequencing system. The reads were drawn from an experiment in which
an mRNA sample isolated from B. anthracis was sequenced, and they were mapped
to the B. anthracis Ames Ancestor genome sequence. SOCS was run on an Apple
Mac Pro (2×3.0 GHz Dual-core Xeon, 4 GB of RAM). Times shown are the totals
required for both mapping and scoring functions at the specified mismatch tolerance,
and they reflect a single-threaded execution. Multithreading improved overall runtimes
considerably, particularly at mismatch tolerances ≥3.

mapped despite having ≥4 mismatches (Table 1), and are therefore
useful for sequence census methods, we sought to develop a tool
that would allow mapping of SOLiD sequence data in a more
flexible, mismatch-tolerant context that would maximize the number
of usable sequences within a given dataset.

Here, we describe SOCS (short oligonucleotide color space), a
program for efficient mapping of SOLiD sequence data to a reference
genome within color space. SOCS is built on an iterative variation of
the Rabin–Karp string algorithm (Karp and Rabin, 1987), which uses
hashing to accelerate the process of matching sequence reads to the
reference genome (see Supplementary Material for a more extensive
description of the algorithm). Our hash function enumerates a subset
of the sequence being hashed using 2 bits per color (the size of the
subset is constrained by memory limitations on the hash table).
The overall algorithm is similar to that used by software tools
developed for analysis of Illumina-Solexa data (Li et al., 2008; Smith
et al., 2008); briefly, to match all sequence reads with n mismatches
relative to the reference genome, n+1 partial hashes are used, which
ensures that at least one partial hash will match a partial hash from
the reference string. The mismatch tolerance is specified by the user,
with higher tolerances resulting in more usable data and longer run
times (as the tolerance increases, the fragments used for each partial
hash get smaller, and thus their hashes are less unique). To help offset
this time increase, SOCS maps at lower tolerances first, reducing the
data to be mapped at higher tolerances.

During the mapping process, if a read maps to two or more non-
identical genomic substrings within the maximum tolerance, quality
scores and mismatch counts are used in determining the optimal
match (see Supplementary Material). If the genomic substrings
are identical, all matching locations are recorded and flagged as
ambiguous. Once optimal matches are determined, coverage maps
of each reference chromosome are calculated. For each read mapped,
the coverage scores of the nucleotides covered by that read are
increased by 1. Essentially, each coverage score represents the
number of times a given nucleotide in the reference genome is
represented within the pool of sequence reads (with each strand
considered independently). Scores for reads flagged as ambiguous
are recorded in a separate file—in this way, unambiguously mapped
data can be kept separate from data for which uncertainty exists.
Finally, to aid in SNP discovery, SOCS finds all color space
differences that indicate isolated mismatches between the sequenced
nucleotides and the reference genome. The position and base

transition of the indicated mismatches are recorded in an additional
set of score files.

We tested SOCS using a SOLiD dataset obtained in sequencing
an mRNA sample isolated from Bacillus anthracis. Our test dataset
contained 27 942 602 reads, and we mapped them to the B. anthracis
Ames Ancestor genome obtained from GenBank. The times required
for each iteration of the algorithm are shown in Table 1, along
with the number of reads successfully mapped at each step. The
times required at a mismatch tolerance of ≤3 are comparable to
those reported for other recently developed tools (Li et al., 2008),
and it should be noted that although setting the tolerance above
three results in a significantly increased run time, the amount of
usable sequence data increases dramatically as well. A mismatch
tolerance of five, for instance, yields 24.5% more usable data than
a tolerance of three, and a mismatch tolerance of eight yields
65.8% more data (data not shown). This is a significant advantage
for applications such as transcriptome profiling, where sequencing
errors or polymorphisms are irrelevant as long as each read can be
unambiguously mapped to the genome.

SOCS is written in C++, and runs well on Mac OS and Linux/Unix
systems. The program supports multithreading, and is able to use
multiple processors efficiently (mapping at a tolerance of five
mismatches runs ∼3.6× faster with four threads than with a single
thread). Further, for efficient mapping of SOLiD data to large
reference genomes (since runtime will scale in a roughly linear
way with both read number and reference genome size), SOCS
can be implemented on a cluster—we have mapped a 32 million
read data set to the complete human genome (Build 36.3) at a
tolerance of four mismatches in ∼17 h on an eight node (64 core)
cluster. Executable versions, source code, sample datasets, usage
instructions, and scripts that facilitate implementation of SOCS on
a cluster are available at http://socs.biology.gatech.edu/.
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