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ABSTRACT

Summary: Multi-mapping sequence tags are a significant
impediment to short-read sequencing platforms. These tags are
routinely omitted from further analysis, leading to experimental
bias and reduced coverage. Here, we present MuMRescueLite,
a low-resource requirement version of the MuMRescue software
that has been used by several next generation sequencing projects
to probabilistically reincorporate multi-mapping tags into mapped
short read data.
Availability and implementation: MuMRescueLite is written
in Python; executables and documentation are available from
http://genome.gsc.riken.jp/osc/english/software/.
Contact: geoff.faulkner@roslin.ed.ac.uk

1 INTRODUCTION
Next generation sequencing technologies have enabled high-
throughput surveys of spatiotemporal expression across a broad
range of biological contexts. The leading platforms at present
generate millions of short (18–50 bp) reads per experiment. When
applied to transcriptome and epigenome sequencing, using such
techniques as shotgun sequencing of RNA (RNA-seq), chromatin
immunoprecipitation sequencing (ChIP-seq) and Cap Analysis Gene
Expression (CAGE) (Mortazavi et al., 2008; Robertson et al.,
2007; Suzuki et al., 2009), these short-read technologies present
substantial bioinformatic challenges in mapping tags to a genome
reference sequence.

One of the main problems with short-read sequencing is the
substantial proportion of tags that map to multiple genomic loci.
These multi-mapping tags (MuMs) are usually discarded from
further analysis. This omission can introduce experimental bias, as
MuMs provide information about transcribed genomic regions that
cannot be detected with single map tags (SiMs) alone, such as active
retrotransposons and gene families.

An alternative to the removal of MuMs is a strategy to assign them
probabilistically to each genomic location to which they map. In a
previous publication, we introduced a ‘guilt-by-association’ strategy
to calculate the probability that a MuM originated from a particular
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locus (Faulkner et al., 2008). MuMs were proportionately assigned
to each of their mapping locations based on unique coincidences
with SiMs and other MuMs. This MuMRescue algorithm was
subsequently applied to large scale RNA-seq and CAGE data
(Cloonan et al., 2008; Faulkner et al., 2009; Suzuki et al., 2009),
leading to substantially higher transcriptome coverage. During these
implementations, we noticed that for some RNA-seq experiments,
MuMRescue required >32 GB of RAM.

This observation was of critical importance considering the ever
expanding throughput of next generation sequencing technologies.
We subsequently aimed to increase the computational efficiency
of the algorithm, benchmark it against other methods and make
the software publicly available for the first time. Here, we present
the result of this work, MuMRescueLite, an efficient ‘guilt-by-
association’ rescue strategy for MuMs produced by large scale
short-read sequencing experiments.

2 MuMRescueLite
The fundamental goal of MuMRescueLite is to calculate the
probability that from a set of possible loci, a given locus is the
true source of a MuM. This is achieved by counting the SiMs that
occur in a nominal window around each locus occupied by a MuM
and dividing this count by the total number of SiMs proximal to
all loci associated with that MuM. In this way, MuMs are assigned
proportionately to each of their loci and are therefore ‘rescued’.
MuMs that do not coincide with at least one SiM are not rescued.
Note that for RNA-seq data a window size of 200 bp is typically the
point at which the proportion of MuMs rescued does not significantly
increase with window size (and computational time).

MuMRescueLite is distinct from alternative methods such as
splitting the signal associated with MuMs by the total number of
locations to which they map (an equal weight approach), rescuing
MuMs using both SiMs and other MuMs (as done by MuMRescue)
or simply ignoring MuMs altogether. MuMRescueLite is also
very different to the ERANGE approach, which assigns MuMs to
known genes based on the SiM counts of those genes (Mortazavi
et al., 2008). To compare MuMRescueLite with these approaches,
we benchmarked each in terms of computational requirements,
percentage of MuMs rescued and RNA-seq/microarray correlations
using publicly available data for mouse liver.
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Table 1. Comparison of MuM rescue methods

Rescue method Maximum
RAM
(MB)

CPU
time
(s)

Percentage
MuMs
rescued

R (present on
array)

R (>100
RPKM)

None 0 0 0.0 0.72 (11 247) 0.32 (686)
Equal weight 50 587 100.0 0.81 (11 247) 0.14 (760)
MuMRescueLite 476 3535 90.9 0.80 (11 247) 0.29 (756)
MuMRescue 10 652 27 527 93.5 0.79 (11 247) 0.3 (744)
ERANGE 2450 5742 91.6 0.81 (11 247) 0.16 (768)

A window size of 200 bp was used for both MuMRescueLite and MuMRescue. A total
of 13 289 953 SiMs and 3 765 156 MuMs (mapping to 10 or fewer locations) were
generated by the RNA-seq experiment (Mortazavi et al., 2008). Pearson correlation (R)
values were calculated for RefSeq transcripts called as present based on the Affymetrix
data (GEO Ref: GSE6850) or generating >100 reads per kilobase, per million mapped
reads (RPKM) in the RNA-seq experiment The number of RefSeq transcripts used to
calculate R is indicated in brackets. Benchmarking was performed on a 2600 MHz, dual
core AMD Opteron™ processor with 64 GB of RAM.

As shown in Table 1, MuMRescueLite required more RAM and
CPU time than equal weighting or not rescuing the MuM RNA-seq
tags and less RAM and CPU time than the MuMRescue or ERANGE
algorithms. MuMRescueLite, MuMRescue and ERANGE rescued
a similar percentage of MuMs (∼91%) but obviously rescued fewer
than equal weighting (100%).

Cross platform correlations between the RNA-seq and
Affymetrix data were consistently highest for MuMRescueLite and
MuMRescue. For this analysis, we calculated Pearson correlations
(R) for RefSeq transcripts either called as present by the Affymetrix
experiment or RefSeq transcripts reliably called as present by
the RNA-seq experiment (Table 1). In the regards to the former,
each method other than no MuM rescue generated a correlation
of ∼0.8, with no MuM rescue leading to a correlation of 0.72.
Conversely, for RefSeq transcripts called as present by the RNA-seq
experiment, MuMRescue, MuMRescueLite and no MuM rescue
generated correlations of ∼0.3, compared with equal weighting and
ERANGE which lead to correlations of ∼0.15. These results suggest
that MuMRescue and MuMRescueLite provide the highest rates
of true positive assignments and the lowest rates of false positive
assignments of MuMs to RefSeq transcripts.

Overall, the benchmarking demonstrated that MuMRescueLite
provided the best combination of computational efficiency, success
in rescuing MuMs and cross platform agreement. The very low RAM
requirements of MuMRescueLite would permit much larger scale
sequencing datasets to still be processed on a standard PC.

However, the merits of the other approaches should not be
ignored. The ERANGE package provides a useful variation
of the fundamental ‘guilt-by-association’ strategy pioneered by
MuMRescue by using other evidence such as ESTs, cDNAs or
known genes to resolve MuMs. However, the reliance of ERANGE
upon predefined gene models is highly subject to the definition of
what constitutes a ‘gene’. This notion is increasingly complicated by
pervasive intergenic transcription in mammals (Birney et al., 2007)
and transcriptional complexity within mammalian genes.

By using a window around each MuM, MuMRescueLite avoids
the need to define a gene set. Furthermore, it can be customized to

use a window specific to a given genomic structure, such as proximal
promoter regions (Carninci et al., 2006). Yet another positive aspect
of the use of a window is that as sequencing depth increases, the
probability of a MuM occurring near another tag also increases. This
permits more MuMs to be rescued, as we observed for ‘deep’ CAGE
sequencing (Suzuki et al., 2009), where far more CAGE tags were
rescued as a proportion than for earlier CAGE experiments. Finally,
the simplicity of use for MuMRescueLite, which requires a single
input file, a window size and the output file name, compares well
with ERANGE, which needs several input files and packages as part
of a larger pipeline.

In a final note to users, MuMRescueLite is designed to analyze
individual short read libraries corresponding to a specific tissue,
cell or activation state, rather than combining multiple libraries of
varying biology. If the latter is done, a SiM may rescue a MuM
when in fact these tags originate from different biological states and
therefore may not coincide in vivo.

3 CONCLUSIONS
MuMRescueLite is an evidence-based treatment of multi-mapping
short sequence reads. It is as accurate as its precursor, MuMRescue,
but is far more computationally efficient due to code optimization
and the use of SiMs alone to rescue MuMs. We have shown
that MuMRescueLite is superior to disregarding MuMs or equal
weighting their signal. At least for the RNA-seq data presented here,
it also compares favorably with ERANGE in several areas. Finally,
MuMRescueLite greatly expands the coverage and mapping rate
of massively parallel short read approaches to transcriptome and
epigenome sequencing, with millions of informative tags ‘rescued’
and an increase in cross-platform correlation.

Funding: RIKEN Omics Science Center and the Genome Network
Project from the Ministry of Education, Culture, Sports, Science and
Technology, Japan; Functional RNA Research Program (supported
by the RIKEN Frontier Research System, to Y.H.); National Health
and Medical Research Council (grant 455857 to S.M.G and grant
456140); Australian Stem Cell Centre (to G.J.F).

Conflict of Interest: none declared.

REFERENCES
Birney,E. et al. (2007) Identification and analysis of functional elements in 1% of the

human genome by the ENCODE pilot project. Nature, 447, 799–816.
Carninci,P. et al. (2006) Genome-wide analysis of mammalian promoter architecture

and evolution. Nat. Genet., 38, 626–635.
Cloonan,N., et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA

sequencing. Nat. methods, 5, 613–619.
Faulkner,G.J. et al. (2008) A rescue strategy for multimapping short sequence tags

refines surveys of transcriptional activity by CAGE. Genomics, 91, 281–288.
Faulkner,G.J. et al. (2009) The regulated retrotransposon transcriptome of mammalian

cells. Nat. Genet., 41, 563–571.
Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by

RNA-Seq. Nat. Methods, 5, 621–628.
Robertson,G. et al. (2007) Genome-wide profiles of STAT1 DNA association using

chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods,
4, 651–657.

Suzuki,H., et al. (2009) The transcriptional network that controls growth arrest and
differentiation in a human myeloid leukemia cell line. Nat. Genet., 41, 553–562.

2614

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/19/2613/180391 by guest on 09 April 2024


