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ABSTRACT

Motivation: Microarray experiments frequently produce multiple
missing values (MVs) due to flaws such as dust, scratches,
insufficient resolution or hybridization errors on the chips.
Unfortunately, many downstream algorithms require a complete data
matrix. The motivation of this work is to determine the impact of
MV imputation on downstream analysis, and whether ranking of
imputation methods by imputation accuracy correlates well with the
biological impact of the imputation.
Methods: Using eight datasets for differential expression (DE)
and classification analysis and eight datasets for gene clustering,
we demonstrate the biological impact of missing-value imputation
on statistical downstream analyses, including three commonly
employed DE methods, four classifiers and three gene-clustering
methods. Correlation between the rankings of imputation methods
based on three root-mean squared error (RMSE) measures and the
rankings based on the downstream analysis methods was used
to investigate which RMSE measure was most consistent with
the biological impact measures, and which downstream analysis
methods were the most sensitive to the choice of imputation
procedure.
Results: DE was the most sensitive to the choice of imputation
procedure, while classification was the least sensitive and clustering
was intermediate between the two. The logged RMSE (LRMSE)
measure had the highest correlation with the imputation rankings
based on the DE results, indicating that the LRMSE is the best
representative surrogate among the three RMSE-based measures.
Bayesian principal component analysis and least squares adaptive
appeared to be the best performing methods in the empirical
downstream evaluation.
Contact: ctseng@pitt.edu; guy.brock@louisville.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Gene expression data obtained from microarray experiments are
usually peppered with missing values (MVs) that occur from a
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variety of reasons. Even though the technology has been improved
over the past decade, MV imputation remains a necessary key step in
data preprocessing. Randomly scattered MVs may be due to spotting
problems, poor hybridization, inadequate resolution, fabrication
errors or contaminants on the chip including scratches, dust and
fingerprints. These MVs are usually flagged by absent/present calls
in theAffymetrix platform, detection P-values in the Illumina system
or other outlier detection algorithms in cDNA arrays. Since many
downstream analyses require a complete dataset for implementation,
MV imputation is a common practice. Many MV imputation
methods have been developed in the literature (Bo et al., 2004;
Brock et al., 2008; Kim et al., 2006; Oba et al., 2003; Troyanskaya
et al., 2001). All these methods are based on the fact that genes
do not function individually, but are usually highly correlated with
co-regulated genes. MV imputation methods generally belong to
two categories. In the first category, expression information of a
missing entry is borrowed from neighboring genes whose closeness
is determined by a distance measure (e.g. correlation, Euclidean
distance). Famous ‘local’ methods in this category include k-nearest
neighbors (KNN; Troyanskaya et al., 2001), ordinary least squares
(OLS; Bo et al., 2004), least squares adaptive (LSA; Bo et al.,
2004) and local least squares (LLS; Kim et al., 2006). For the
second category, dimension reduction techniques are applied to
decompose the data matrix and iteratively reconstruct the missing
entries. Singular value decomposition (SVD; Troyanskaya et al.,
2001), partial least squares (PLS; Nguyen et al., 2004) and Bayesian
principal component analysis (BPCA; Oba et al., 2003) belong
to this ‘global’ method category. In most methodological papers,
evaluations comparing relatively few (3–5) MV imputation methods
in a small number (3–5) of datasets are commonly seen. This can
result in over-optimism of the newly developed algorithm, an issue
that has been recently discussed in Jelizarow et al. (2010). The issue
of whether an overall best MV imputation method exists or which
MV imputation method is best suited to a given dataset was not
clear until a recent comprehensive comparative study by Brock et al.
(2008). They investigated the MV imputation performance of eight
popular methods in various types of datasets (time series, multiple
exposure and time series × multiple exposure) and concluded that
no universally best MV imputation method exists, although three
top methods (LSA, LLS and BPCA) consistently performed among
the best. They further proposed an entropy-based selection scheme
that predicts performance of local-based (KNN, OLS, LSA and
LLS) versus global-based (PLS, SVD and BPCA) MV imputation
methods in different kinds of data structures, classified by an entropy
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measure from the distribution of eigenvalues. In general, local-based
methods perform better in high complexity (larger entropy measure)
datasets, while global-based methods have better performance in low
complexity data (smaller entropy measure). A self-training selection
scheme was also proposed to simulate from a given data and decide
which MV imputation method should be used.

To date, most methodology and comparative papers mentioned
above applied different variants of root mean squared error (RMSE)
quantities to evaluate the performance of different MV imputation
methods. The evaluation is performed as follows. A complete
expression data matrix is first given, MVs are randomly generated
and an imputation method is applied. Finally, the RMSEs measure
the difference of the imputed values to the original true values
in the complete data. The procedure is repeated for different
MV imputation methods and the resulting RMSEs determine the
performance of the different methods.

Although such a quantitative measure is useful to investigate the
degree of data recovery by MV imputation methods, it remains
unclear how the MV imputation methods affect the different
downstream analyses such as biomarker detection, classification and
gene cluster analysis. This is particularly important, since there is
no guarantee that performance evaluations by RMSE measures are
consistent with evaluations by biological impacts in downstream
analyses, which is the ultimate concern in microarray data analysis.
There have been a few initial efforts in this direction. Jornsten et al.
(2005) and Scheel et al. (2005) investigated the impact on DE gene
detection. Wang et al. (2006) explored in the area of classification
analysis. Ouyang et al. (2004), de Brevern et al. (2004) and Tuikkala
et al. (2008) examined gene cluster analysis. Tuikkala et al. (2006)
studied the effect of MVs in gene ontology analysis. Each of
these studies presents some partial conclusions using a smaller
number of datasets, comparing limited number of MV imputation
methods, and including fewer downstream analysis methods in each
category, relative to the current study. Aittokallio (2009) has recently
performed a comprehensive review of the MV imputation issue in
large-scale studies, particularly in microarray datasets. It reviewed
the biological impact evaluation papers described above, pointed out
potentially partial conclusions from these smaller evaluation studies
and described the importance of a future comprehensive evaluation.
Our study addresses this need by providing a comprehensive and
systematic evaluation to examine the biological impact of MV
imputation in the three areas of downstream analyses described
above: biomarker detection, classification and gene cluster analysis.
Supplementary Table 1 summarizes features of the six published
biological impact papers mentioned above compared with the
research design in this article. To our knowledge, this is the
first comprehensive evaluation study to focus on all three major
downstream analyses. The result will provide deep insights into the
biological impacts of MV imputation, and instruct practitioners on
how to pick an MV imputation method and the expected biological
impacts of imputation for a given dataset.

2 METHODS

2.1 Datasets
To perform a comprehensive comparison and evaluation, we included eight
microarray datasets with a binary clinical outcome that are suitable for
differentially expressed (DE) gene detection and classification analysis: GOL
(Golub et al., 1999), ALO (Alon et al., 1999), LUO (Luo et al., 2001), SIN

(Singh et al., 2002), BEE (Beer et al., 2002), VAN (van’t Veer et al., 2002),
LAP (Lapointe et al., 2004) and YU (Yu et al., 2004). We also include eight
datasets with various experimental or disease conditions that are suitable for
gene clustering evaluation: CAU (Causton et al., 2001),

SP.AFA (Spellman et al., 1998), SP.ELU (Spellman et al., 1998), ALI
(Alizadeh et al., 2000), ROS (Hughes et al., 2000), YEO (Yeoh et al.,
2002), BHA (Bhattacharjee et al., 2001) and NCI60 (Staunton et al., 2001).
Supplementary Table 2 summarizes each of the datasets used in this study.
Genes with zero/negative or MVs are filtered out in each dataset before being
used for imputation. After filtering, the remaining genes form a complete data
set (CD) that is used as input for imputation evaluation.

All Affymetrix datasets except NCI60 were imputed based on both the
original unlogged data or log-transformed data (Section 2.4). NCI60 was
preprocessed to generate log-transformed data as described by Culhane et al.
(2003), and unlogged data were created by exponentiating the logged values.
For the cDNA datasets, R/G values were used for the unlogged data and
logged data were generated by taking logs of the ratios and were further
normalized by the quantile normalization method (Bolstad et al. 2003). For
the downstream analysis methods (DE, classification and clustering), results
were primarily based on the logged datasets. However, to assess the impact
of taking logarithms prior to analysis, unlogged datasets were also used for
Affymetrix data.

2.2 MV imputation methods
We included eight MV imputation methods for evaluation: KNN.c, KNN.e,
OLS, LSA, LLS, PLS, SVD and BPCA. The algorithms are briefly described
in the Supplementary Material, ‘MV imputation methods’. For simplicity, we
choose parameters for each method based on our past experiences in Brock
et al. (2008). LSA and BPCA were run using JAVA code provided by the
original authors, LLS was run using the pcaMethods package (Stacklies et al.,
2007) written in R, and all other algorithms were coded in R.

2.3 Downstream analyses methods
To evaluate the biological impacts of MV imputation on downstream
analyses, we consider three types of analyses commonly seen in microarray
experiments: DE gene detection, classification and gene clustering. The
specific methods evaluated are described below.

2.3.1 DE gene detection We included SAM (Tusher et al., 2001), LIMMA
(Smyth et al., 2004) and t-test plus Benjamini–Hochberg (Benjamini et al.,
1995) correction (t-test + BH). The false discovery rate (FDR) is controlled
at 5% and the default parameters are used in the packages.

2.3.2 Classification analysis We included LDA (Fisher, 1936), KNN (Fix
et al., 1951), PAM (Tibshirani et al., 2002), and SVM (Meyer et al., 2003).
For LDA, KNN and SVM, we performed leave-one-out validation, selected
the top N =5, 10, 30, 50, 100 gene features with the largest t-statistics
and picked the one that generates the smallest Youden index (YI) (defined
as sensitivity + specificity − 1). For PAM, gene selection is embedded and
we picked the threshold that generates the best accuracy. To determine the
optimal K value in KNN and the kernel function in SVM, we analyzed the
complete datasets (CD) for three datasets (GOL, ALO and LUO; data not
shown). K =5 in KNN and the linear kernel function in SVM yielded the
smallest error rates, and those parameters are used throughout this article.

2.3.3 Gene clustering analysis We included K-means, SOM (Kohonen,
2001) and Mclust (Fraley and Raftery, 2002). Since the number of clusters
K usually cannot be determined for a given dataset, we ran gene clustering
using different choices of K . Due to the already demanding computation, we
only tested K =5, 10 and 15 for K-means, SOM and Mclust.
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2.4 Quantitative evaluation: RMSE measures
Variants of RMSE are commonly used as a statistical quantity to measure the
similarity of estimated values and original true values, when the original true
values are known. The following simulation procedure from a complete data
set (CD = (ygs)G×S) with no MVs is commonly performed in the literature,
where ygs is the expression intensity of gene g(1≤g≤G) and sample s(1≤
s≤S). MVs are randomly generated by removing r% of values in complete
data to generate data with MVs (MD). Given a MV imputation method, the
missing entries in MD are imputed as ŷgs and the imputed dataset is denoted
as ID. Finally, RMSEs are used to evaluate the performance by comparing
the values of missing entries in ID with those in CD.

Below, we outline six different RMSE measures that have been utilized in
the literature for evaluating MV imputation methods. Bo et al. (2005) used
a non-normalized RMSE measure between the true values and the estimated
values:

RMSE=
√

1

# of missing

∑
{ygs missing}

(ŷgs −ygs)2

Other papers normalized the RMSE measure by different normalizing
constants: average value over all observations in complete data (NRMSE1;
Troyanskaya et al., 2001), standard deviation of the values in complete data
over missing entries (NRMSE2; Oba et al., 2003 and Kim et al., 2005)
and root mean square of the values in complete data over missing entries
(NRMSE3; Ouyang et al., 2004). See Supplementary Table 3 for details.

The main purpose of normalizing the RMSE is to allow for comparisons
across different datasets that possibly have different intensity scales or
intrinsic difficulties in MV imputation. For ranking or selecting the best
MV imputation method in a given dataset, however, all the four RMSE
variants provide identical results. Therefore, we will keep the NRMSE by
Troyanskaya et al. (2001) as a representative of the four variants.

Nguyen et al. (2004) proposed a relative estimation error (RAE) measure
to compare various imputation methods. Unlike the NRMSEs, it uses an
L1-norm and has a slight modification to alleviate drawbacks when yij equals
or is close to zero:

RAE= 1

# of missing

∑
{ygsmissing}

|ŷgs −ygs|
�(ygs)

� (ygs)=
{ ∣∣ygs

∣∣ if
∣∣ygs

∣∣>ε

ε if
∣∣ygs

∣∣<ε

Intuitively, RAE is a better measure as it penalizes less for genes with high
expression level. For example, an MV imputation error of 50 for genes with
true expression level at 200 is significant, while the error of 50 becomes
ignorable for genes with true expression level of 2000.

More recently, Brock et al. (2008) suggested the logged RMSE (LRMSE)
when the expression intensities are all positive:

LRMSE=
√

1

# of missing

∑
{xgs missing} (x̂gs −xgs)2,

where x̂gs = log(ŷgs). It is easy to show that the LRMSE is an approximation
of a square root of an L2-norm version of RAE without near-zero correction
(see the proof in the Supplementary Material, Proof of approximation
between LRMSE and RAE-L2):

RAE-L2 =
√

1

# of missing

∑
{ygs missing}

(
ŷgs −ygs

ygs

)2

.

In this article, we will compare and evaluate the performance of NRMSE1,
LRMSE and RAE. In our evaluations, we selected to calculate the NRMSE1
and RAE measures based on the imputations of the unlogged data to conform
with the method of calculation in Troyanskaya et al. (2001) and Nguyen
et al. (2004), respectively, while calculation of the LRMSE was based
on imputations using logged datasets. We also compared exp(x̂gs)with the
original unlogged observations, where the imputations are based on the
logged data.

2.5 Biological evaluation: biological impact measures
2.5.1 Biomarker list concordance index for DE gene detection Suppose
CD, MD and ID are obtained and generated according to Section 2.4.
By applying a selected DE gene detection method (SAM, LIMMA or
t-test + BH), one biomarker list is obtained from CD (denoted as GCD) and
another biomarker list can be generated from ID (denoted as GID). We define
the biomarker list concordance index (BLCI) between GCD and GID as

BLCI(GCD,GID)= n(GCD ∩GID)

n(GCD)
+ n(GC

CD ∩GC
ID)

n(GC
CD)

−1,

where n(•) is the number of genes in a given gene set, GC
CD is the complement

set of GCD and GC
ID is the complement of GID. Note that BLCI is equivalent of

viewing the biomarker list from complete data (i.e. GCD) as the gold standard
and GID as the prediction result. The first term equals the sensitivity and the
second term is specificity. BLCI is equivalent to the well-known YI (Youden,
1950), which is defined as the sensitivity + specificity − 1. We should note
that taking the biomarker list from complete data as the gold standard is
necessary since we do not know the true biomarker list of a given dataset.
A high BLCI value indicates that the biomarker list from ID is similar to
that from CD, and MV imputation procedure does not significantly alter the
results of the downstream biomarker detection method. As a result, we expect
that a good MV imputation method should generate a high BLCI value.

2.5.2 YI for classification Similarly, we utilize YI as a quantitative
measure to identify the impact of MVs in classification. Since we know
the true class labels of the samples in this supervised learning scenario, we
can directly evaluate the YI of the prediction result from each imputed data.
We expect a good MV imputation method to generate a high YI.

2.5.3 Adjusted Rand Index for gene clustering analysis The Adjusted
Rand Index (ARI) (Hubert, 1985) is commonly used to evaluate the similarity
between any two given clustering results. The original Rand index considers
clustering relationship of any pair of objects in the data and computes
the proportions of concordant pairs (two objects clustered together in both
clustering or not clustered together in both clustering) among all possible
pairs. The adjusted Rand index (adjusted Rand index) is a standardized
version of Rand index that has expectation zero when the two clustering
results are randomly generated. Similar to BLCI for DE gene detection,
since we do not know the true gene clustering structure of a given dataset,
we take the clustering result from CD as the gold standard and compare
clustering result from ID to the gold standard by adjusted Rand index. A
higher adjusted Rand index value indicates higher similarity between the
two clustering results, and that the MV imputation procedure introduces a
smaller impact on the downstream gene clustering analysis.

2.6 Research design and evaluation criteria
In the beginning, we considered 10 imputation methods including naïve
methods of column average and row average. These two methods clearly
performed poorly and were subsequently removed from consideration.
Eight remaining MV imputation methods (1≤m≤M =8; KNN.e, KNN.c,
SVD, OLS, PLS, LSA, LLS and BPCA) were considered, eight datasets
(1≤d ≤D1 =8) for DE gene detection and classification and eight datasets
(1≤d ≤D2 =8) for gene clustering were evaluated, four MV percentages
(1≤p≤P=4; (r1, r2, r3, r4) = (1, 5, 10 and 20%)) were considered and
finally 100 independent simulations (1≤n≤N =100) were performed. In
total, 8×16×4×100=51200 times of random deletion from complete data
matrix and then MV imputation were performed. Due to the already high-
computational demand, we skipped the procedure of finding the optimal
parameter for each MV imputation method in each dataset and used the
optimal parameters in the comparative study by Brock et al. (2008). To
investigate quantitative and biological criteria for deciding which MV
imputation methods performed better, three RMSE measures (NRMSE,
LRMSE and RAE), three DE gene detection methods (SAM, LIMMA and
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Fig. 1. Schematic illustration of the research design. Top: evaluation
by RMSE measures comparing degree of recovery between complete
and imputed data. Bottom: evaluation by biological evaluation indexes
comparing impact in downstream analysis results. Downstream analysis
results from complete data are considered ‘gold standard’ and downstream
analysis results from imputed data are compared by BLCI, YI and adjusted
Rand index.

t-test+BH), four classification methods (LDA, KNN, PAM and SVM) and
three gene clustering methods (K-means, SOM and hierarchical clustering)
were considered. In gene clustering, the number of clusters is usually not
known and difficult to estimate from the data. We performed K =5, 10 and 15
to select the best. Therefore, we have 8×16×4×100×3=153600 RMSE
evaluations, 8×8×4×100×3=76800 DE gene detection evaluations,
8×8×4×100×4=102400 classification evaluations and 8×8×4×100×
3×3=230400 gene-clustering evaluations. A schematic illustration of our
research design is given in Figure 1.

2.6.1 Hypotheses and aims Our ultimate goal is to determine whether the
widely used RMSE measures in the literature are adequate to decide the best
MV imputation methods and how their performance compare/correlate to
the actual biological impacts in different downstream analyses. To achieve
this goal, we consider the following three aims:

Aim 1A: investigate whether applying different RMSE measures affects
the performance ranking of the MV imputation methods.

Aim 1B: investigate whether applying different downstream analysis
methods in each category (i.e. SAM, LIMMA and t-test+BH for DE gene
detection; LDA, KNN, PAM and SVM for classification; K-means, SOM and
hierarchical clustering for gene clustering) affects the performance ranking
and selection of the MV imputation methods.

Aim 2A: if selection of the RMSE measure greatly affects the selection
of the MV imputation method in Aim 1A, investigate which RMSE measure
is more consistent (correlated) with the biological impact measures.

Aim 2B: quantify the consistency and correlation of the best RMSE
measure (determined by Aim 2A) with the biological impact measures in
terms of the performance ranking of the MV imputation methods.

Aim 3: determine which imputation methods, if any, are optimal in terms
of downstream biological impact evaluation by BLCI, YI and adjusted Rand
index.

2.6.2 Consistency measures To investigate the three hypotheses above,
we apply Spearman’s rank correlation to quantify the consistency of
the performance ranking of MV imputation methods given any two
evaluation measures (either RMSE measures or biological impact measures).
Specifically, we define the consistency between two evaluation measures X

and Y as

rX×Y
dpm =Corsp((X1dpn,...,XMdpn),(Y1dpn,...,YMdpn)),

for MV imputation method m, dataset d, MV percentage rp and simulation
n. For Aim 1A and 1B, X and Y are either two RMSE measures (NRMSE,
LRMSE and RAE), two BLCI measures (SAM, LIMMA and t-test+BH), two
YI es (LDA, KNN, PAM and SVM), or two adjusted Rand indexes (K-means,
SOM and hierarchical clustering). For Aim 2A, X is an RMSE measure and
Y is a biological impact measure. We report the median consistency measure
over the simulations,

r̃X×Y
dp =median of {rX×Y

dpm ,1≤n≤N}.

2.6.3 Mixed effects model For Aim 2B, we fit a mixed effects model
to investigate how well the RMSE measures predict the biological
impact measures. For each biological impact measure and combination of
experimental conditions, we obtain a slope estimate β and a ‘pseudo-R2’
value R∗2, which measures the proportionate reduction in the error term
variance between the model which includes the RMSE measures and the
model which omits them (i.e. sets β to zero). Details of the mixed effects
model are given in the Supplementary Material, ‘Mixed effects model’.

3 RESULTS

3.1 Aim 1—consistency among RMSE measures and
among downstream analysis methods

To answer Aim 1A, Figure 2a shows the median consistency
between RMSE measures, r̃RMSE×RMSE , in eightDE/CL datasets.
In general, as the MV percentage increases (from 1% to 20%),
the consistency between RMSE measures also increases. This is
due to the fact that at lower MV percentages, outlying expression
measurements and chance variation can have a larger influence
on the RMSE measures and affect the ranking of the imputation
methods, whereas at higher MV percentages this influence is abated
and the measures stabilize, leading to greater agreement between the
rankings. When the NRMSE and the RAE were calculated based on
imputations using the unlogged datasets, the NRMSE was more
correlated with the RAE than the LRMSE in almost all cases,
and the consistency between the LRMSE and RAE measures is
weak (Fig. 2A). But, when imputations on the logged data were
used to calculate all three measures, the LRMSE generally had
higher correlation with the RAE (Supplementary Tables 4[exp(log)]
and 5B[exp(log)]). This is in agreement with the theoretical result
that the LRMSE approximates the L2-norm version of RAE (see
Supplementary Material, Proof of approximation between LRMSE
and RAE-L2). From the variable and often low to intermediate
consistency measures, we conclude that the performance ranking by
the NRMSE, LRMSE and RAE for selecting the best MV imputation
method greatly depends on the selection of the RMSE measure.

Similarly for Aim 1B, Figure 2B–D compares the consistency
measures (r̃BLCI×BLCI ,r̃YI×YI and r̃ARI×ARI ) of different
downstream analysis methods. As with the RMSE measures, the
consistency between measures increases as the MV percentage
increases. For DE gene detection (Fig. 2B), the consistency between
the three methods (SAM, LIMMA and t-test+BH) is high (around
0.62–0.97 for 20% missingness). Hence, imputation methods that
perform well with respect to one DE gene detection method, in terms
of the BLCI score, also perform well on the other two methods.
In Figure 2C, for classification, the consistency measures are
relatively low. Hence, ranking of imputation algorithms according
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Fig. 2. Consistency measures (y-axis) in different MV percentage (x-axis).
(A) Between three RMSE measures: circle (LRMSE versus RAE), triangle
(NRMSE versus LRMSE) and square (NRMSE versus RAE). (B) Between
three BLCIs: circle (LIMMA versus T+BH), triangle (SAM versus LIMMA)
and square (SAM versus T+BH). (C) Between three YIs: circle (KNN versus
PAM), triangle (KNN versus SVM) and square (KNN versus LDA). (D)
Between three adjusted Rand indexes: circle (K-means versus SOM), triangle
(SOM versus Mclust) and square (K-means versus Mclust).

to one classifier is not consistent with the other three classifiers,
suggesting that the impact of MV imputation on classification is
more modest. In Figure 2D, for k =10 clusters, the consistency
among rankings of imputation algorithms based on gene clustering
methods is generally as low as Figure 2C, and highly variable

Fig. 3. Consistency measures (y-axis) in different MV percentages (x-axis).
Circle (LRMSE), triangle (NRMSE) and square (RAE). (A) Between three
RMSEs and BLCI based on LIMMA, SAM and T+BH. (B) Between three
RMSEs and YIs based on KNN. (C) Between three RMSEs and adjusted
Rand indexes based on K-means.

according to the dataset (see Supplementary Fig. 1 for K =5 and
K =15 clusters results).

3.2 Aim 2—which RMSE measure better correlates
with the biological impact measures?

Figure 3A–C shows the consistency measures between the three
RMSE measures and downstream analysis methods (r̃RMSE×BLCI ,
r̃RMSE×YI and r̃RMSE×ARI ) to address Aim 2. In Figure 3A, the
LRMSE measure is the most consistent with all three DE gene
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detection methods (SAM, LIMMA and t-test+BH), followed by the
NRMSE and then the RAE. The consistency increases as the MV
percentage increases, ranging from 0.50 to 0.86 for the consistency
between LRMSE and SAM or LIMMA at 20% missing. This
indicates that performance on MV imputation tracks well with
retention of the underlying DE gene list based on the complete
data, so that an accurate MV imputation algorithm results in strong
fidelity of the DE gene list. In Figure 3B, the consistency between
the RMSE measures and YIs based on KNN classification is much
lower, with the majority of values <0.4. This same pattern holds for
the other classifiers as well (see Supplementary Fig. 2). Thus, the
ranking of imputation algorithms on the basis of imputation accuracy
does not coincide with the ranking based on classification accuracy,
and the low consistency measures suggest that classification is less
impacted by MV imputation compared with DE gene detection.
In Figure 3C, for gene clustering, the consistency between the
LRMSE and adjusted Rand index in K-means clustering (K =10)
is shown. The majority of consistency measures are around 0.2,
and the LRMSE is moderately consistent with the adjusted Rand
index in only two of the eight datasets (Afa and Elu). Results for
5 and 15 clusters (Supplementary Fig. 3) are roughly the same, as
are the results for model-based clustering (Supplementary Fig. 4).
However, for SOM, we do see a relatively high consistency between
the adjusted Rand index and the LRMSE (�0.8) for four out of
the eight datasets (Cau, Afa, Ali and Elu), suggesting that better
imputation performance also results in better preservation of clusters
in this case (see Supplementary Fig. 5). Though the consistency is
overall highest between the LRSME and the adjusted Rand index,
due to the variable performance none of the RMSE measures can be
considered a satisfactory surrogate in this case.

Figure 3A–C indicates that the LRMSE is a better quantitative
measure than either the RAE or NRMSE to correlate with the
biological impact measures in ranking the performance of the MV
imputation methods. We further applied a complementary approach
using a mixed-effects regression model to quantify the degree of
consistency. The estimate of the slope term β and the corresponding
pseudo-R2 value in the mixed-effects model indicate the ability
of the RMSE measure to predict the biological impact measure.
Since we have concluded that the LRMSE is more consistent
with the biological impact measures, we only performed the linear
models for LRMSE. Intuitively, good MV imputation results in low
RMSE and high biological impact measures, and we expect the
β estimates to be negative and pseudo-R2 values to be close to
one. Conversely, if both β and the pseudo-R2 are close to zero,
differences of RMSE measures do not affect the biological impact
measures and the selection by the RMSE is uninformative for the
particular downstream analysis. In Figure 4, for regression of the
BLCI on the LRMSE, we can clearly see that the slope estimates
are negative in almost all situations, and the slope decreases as
the MV percentage increases. At 20% missing, all slope estimates
are negative and statistically significant (i.e. the 95% confidence
intervals do not cover zero). Pseudo-R2 values are also generally
increasing with higher MV percentages, reaching as high as 0.8 for
20% missing. Corresponding figures for β and pseudo-R2 values
for classification and clustering are given in Supplementary Figures
6 and 7–9, respectively. In stark contrast to the figures for DE
gene detection, β and pseudo-R2 values for the regression of YI
on LRMSE (classification) are all close to zero, with only a few
exceptions. For gene clustering, β and pseudo-R2 values are close

Fig. 4. β (A) and pseudo-R2 (B) estimates from the mixed-effects model for
regression of the BLCIs (circle: LIMMA, triangle: SAM, square: T+BH) on
the LRMSE.

to zero for both SOM and K-means, but association between model-
based clustering (Mclust) and the LRMSE was relatively high in
many cases, reaching pseudo-R2 values of 0.8 and higher.

3.3 Aim 3—which imputation methods are optimal in
terms of the biological impact measures (BLCI, YI
and adjusted Rand index)?

To follow-up our results from Aims 1 and 2, we investigated which
particular imputation methods, if any, were optimal with regards to
the three biological impact measures. As shown in Figure 5A–C,
averaged ranks from 100 simulations for one of the three biological
impact measures, eight MV imputation methods, and two MV
percentages (circle 5% and square 20%) are plotted. In Figure 5A,
evaluation by BLCI clearly determines LSA and BPCA as the top
performing MV imputation methods in all eight datasets. For YI
evaluation in Figure 5B, the trend is not clear. Figure 5C of adjusted
Rand index evaluation generates results in between that of BLCI
and YI, in that LSA and BPCA show slight evidence of better
performance. Figure 6 summarizes Figure 5A–C by demonstrating
the distribution of averaged ranks in eight datasets and different
MV percentages using boxplots. Again, DE gene analysis by BLCI
evaluation shows strong evidence of best performance by LSA
and BPCA methods (Fig. 6A), while classification analysis by YI
evaluation shows no preference (Fig. 6B). When comparing 5 and
20% MV percentages, 20% missingness shows stronger discrepancy
of averaged rankings across the eight MV imputation methods, a
trend repeatedly observed in Aims 1 and 2. For gene clustering,
the effects of imputation are intermediate between that of DE gene
detection and classification. In gene-clustering methods, ranking of
MV methods in terms of the adjusted Rand index largely depends
on the choice of clustering method and the number of clusters,
as shown in Supplementary Figures 11–13. And, in some cases,
poor-performing methods based on the LRMSE perform well based
on the adjusted Rand index (e.g. SVD for the BHA and YEO
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Fig. 5. Selection of the best MV imputation methods from biological impact
analysis. (A) Averaged ranking of the eight MV imputation methods from
BLCI measure by LIMMA in eight datasets. (B) Averaged ranking from YI
by KNN. (C) Averaged ranking from adjusted Rand indexes by K-means,
K =10. Circle: 5% MV percentage. Square: 20% MV percentage.

datasets). Overall, it is difficult to predict which imputation method
is optimal for clustering analysis on the basis of imputation accuracy,
so that assessment of the downstream results becomes necessary to
guarantee an optimal choice.

4 DISCUSSION AND CONCLUSIONS
Our large-scale comparative study confirms that MV imputation
methods for genomic data should be examined in terms of their
impact on commonly performed downstream analyses. The main
novelty in this study was to investigate the correlation between
RMSE-based measures, which has been the most commonly
employed measures for selection and ordering of MV methods so
far and measures of the biological impact on downstream analysis
including DE gene detection, classification and clustering. Although
several prior studies have investigated the impact of MV imputation
on these downstream analyses individually, to our knowledge our
study is the first to systematically evaluate the impact of MV
imputation on all three of these areas of downstream analysis, using a
large variety of datasets. In the following paragraphs, we highlight
our main conclusions regarding the impact of MV imputation on
each of the three main downstream analysis areas, and contrast our
results with other recent literature.

Our investigation of different RMSE-based measures revealed
that the consistency between rankings of MV imputation measures

Fig. 6. Summary from Figure 5A-C. Distribution of averaged ranks of
the eight datasets and different MV percentages are summarized by box-
plots. Lower ranks represent better MV imputation methods judged by the
biological impact measures. (A) Boxplot for ranking of 8 MV methods from
BLCI measure by LIMMA. (B) Boxplot for ranking of 8 MV methods from
YI by KNN Classifier. (C) Boxplot for ranking 8 MV methods from adjusted
Rand Indexes (ARI) by K-means (K =10).

based on these measures is not high. This suggests that the selection
of RMSE-based measures for evaluation of MV methods should
be taken more carefully, an issue that has not been addressed
in previous studies. Based on the results, the overall agreement
between the three different RMSE measures (RAE, NRMSE and
LRMSE) was generally moderate to high, though it varied from
dataset to dataset and in some cases the consistency between
measures was surprisingly weak (e.g. LRMSE versus NRMSE
on the LAP dataset, see Fig. 2A). This suggests that choice of
RMSE-based measure can give different conclusions regarding
the selection of MV methods. The agreement between rankings
increased as the MV percentage increased, which is reasonable since
the separation between imputation methods should be greater with
higher percentages of MVs.

In evaluating the biological impact of MV imputation on
downstream analyses commonly carried out after estimation of
MVs, we found that detection of DE genes was the most sensitive
analysis to the choice of imputation method, while classification was
the least sensitive and gene clustering was intermediately affected.
Previous studies that investigated the impact of MV imputation
on DE gene detection include Jornsten et al. (2005) and Scheel
et al. (2005). Jornsten et al. investigated six methods [SVD, BPCA,
KNN, Gaussian mixture clustering (GMC), row imputation and
LinCmb] and three datasets, while Scheel et al. only investigated
two methods (LinImp and KNN) and two datasets. In both cases,
the more sophisticated imputation methods (BPCA, GMC, LinCmb
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and LinImp) outperformed the simpler KNN and SVD methods.
This is in agreement with our results, as we found that in general
two of the three top-performing methods from Brock et al. (2008)
(BPCA and LSA) also performed well for DE gene detection. While
some of the methods evaluated in Jornsten et al. (2005) and Scheel
et al. (2005) may outperform the methods we investigated, the
important discovery from our study is that choice of imputation
algorithm has an important impact on DE gene discovery, and
that further this impact tracks well with the performance of the
imputation algorithms in terms of the LRMSE. The strength of the
correlation between the LRMSE and the biological impact ranking
for DE gene detection (BLCI) was appreciably high, with pseudo-R2

values as high as 0.8.
In contrast, for classification analysis the consistency between

rankings of imputation methods based on RMSE measures and
biological impact measures (YI) was low (around 0 in most
situations), suggesting less biological impact of MV imputation
on classification. This conclusion is consistent with Wang et al.
(2006), who found that KNN, LLS and BPCA all had relatively
similar performance in terms of classification accuracy for
the five datasets they evaluated. This is intuitively reasonable
because classification methods are analyses with contributions from
multiple genes, and are thus more ‘robust’ to variation in MV
estimation.

While DE gene detection and classification presented relatively
clear-cut cases where MV imputation had significant and little
impact, respectively, the impact of imputation on clustering analysis
was more mixed. Consistency between RMSE measures and the
adjusted Rand index for clustering was a mixed bag, and tended
to depend both on the dataset and the number of clusters. Other
recent studies that investigated the impact of MV imputation on
clustering analysis include Tuikkala et al. (2008) and Celton et al.
(2010). Tuikalla et al. evaluated eight datasets using K-means
clustering, and found that significant differences between imputation
methods in terms of RMSE measures did not translate into significant
differences in terms of the original gene clusters or biological
interpretations. Celton et al. (2010) evaluated the effect of MV
imputation on both K-means and hierarchical clustering, using five
different datasets and 12 imputation methods. Like Tuikkala et al.,
they found that K-means was relatively robust to MVs in terms
of conserving gene associations, while hierarchical clustering was
more sensitive. Our results agree with these assessments, in that
K-means clustering seems little impacted by MV imputation, while
other methods (SOM) appear to be more affected. One surprising
result is that they found the EM_array method by Bo et al. (2004) to
be the optimal method based on both the RMSE and the clustering
assignment index, which was not evaluated in our study as it is
a less technically advanced method compared with LSA. While
BPCA, LSA and LLS frequently did well in regards to the clustering
biological impact, there was definitely no single best imputation
method in this regard.

Our selection of biological impact measures for the effect of
MV imputation on downstream microarray analyses is motivated
by choosing a measure that is both comprehensive and intuitive.
The BLCI and YI were selected because they capture both the
sensitivity and specificity of the result in a single measure, and
the adjusted Rand index is a well-known and widely used measure
of concordance between two clustering partitions. However, other
measures of the impact of imputation on downstream analysis are

certainly justifiable, and we feel the main conclusions from these
studies are still comparable with our study. One potential limitation
of the BLCI is that for smaller missing percentages, the BLCI score
may be strongly impacted by genes without MVs compared with
those with MVs, and we did not evaluate these separately. However,
for higher MV percentages the majority of genes will have at least
one MV, so by evaluating a wide range of missing percentages we
feel that addresses this issue indirectly. Another limitation is that the
false discovery rate was not evaluated separately, and recent studies
have shown that subsamples of expression matrices can produce
gene lists with low FDRs (Zhang et al., 2008). One last point is our
use of the term ‘biological’ impact. In our sense, ‘biological impact’
relates to the impact on downstream analysis methods, which we
feel is of direct concern to biologists because these methods are
used to select the genes and biomarkers that form the basis for the
biological interpretation of the study. However, our use of the term
is different from studies that measure MV imputation performance
on the basis of external information from biological databases, e.g.
GO terminology (Sehgal et al., 2008; Tuikkala et al., 2008).

While the primary analysis in our study is based on the
downstream analysis of the logged data, typical of practice, we
also examined the biological effects on unlogged data to avoid
favoritism toward the LRMSE measure. While the consistency
between the BLCI- and RMSE-based rankings is still relatively
high, the LRMSE has the highest correlation only for one-half of
the datasets, while the NRMSE has the highest correlation for the
other half (Supplementary Table 6). Consistency between RMSE
and YI is still very low for classification using the unlogged data
(data not shown). For gene clustering, both logged and unlogged
data were inconsistent in terms of which RMSE measure was the
most consistent with imputation rankings based on the adjusted Rand
index, and no RMSE measure was truly adequate (data not shown).
Again, though there is no considerable difference in consistency
results based on logged versus unlogged data, we suggest taking
log transformations prior to imputation as well as downstream
data analyses, due to the potential undue influence of outliers for
unlogged data (Eisen et al., 1999; Kerr et al., 2000).

We conclude by highlighting the main take-home messages from
our study. Prior to deciding which imputation algorithm to use
for MVs in microarray data, it is informative for investigators to
know which areas of downstream analysis are even impacted by
MV imputation. To this end, we have shown that while choice of
imputation method has a strong impact on the results of DE gene
detection, it has relatively little impact on classification accuracy and
an intermediate affect on clustering results. Further, for differential
expression methods, the LRMSE may serve as a representative
surrogate for selecting the optimal imputation method, so that MV
selection methods like those presented in Brock et al. (2008) should
provide a good choice of imputation algorithm for DE gene analyses.
However, for clustering analysis, no single RMSE truly suffices,
so that evaluation and comparison of MVs should be explored
directly in terms of biological impact measures. While the more
sophisticated imputation methods (BPCA and LSA) were generally
the top performers in terms of LRMSE and DE gene detection
(BLCI), for classification accuracy there was no uniformly best
method and for gene clustering some algorithms that performed
poorly in terms of LRMSE (SVD) did well in terms of the
clustering biological impact measure (adjusted Rand index). Hence,
there is room for further sophisticated investigation of imputation

85

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/78/201857 by guest on 09 April 2024



[10:57 10/12/2010 Bioinformatics-btq613.tex] Page: 86 78–86

S.Oh et al.

performance based on data complexity and other characteristics of
the dataset (Brock et al., 2008), which will be the basis for future
studies.
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